设△ABC的内角A,B,C所对边的长分别为a,b,c,且有2bcosA=acosC+ccosA.(1)求角A的大小;(2)若b=2
设△ABC的内角A,B,C所对边的长分别为a,b,c,且有2bcosA=acosC+ccosA.(1)求角A的大小;(2)若b=2,c=1,D为BC的中点,求a及AD的长...
设△ABC的内角A,B,C所对边的长分别为a,b,c,且有2bcosA=acosC+ccosA.(1)求角A的大小;(2)若b=2,c=1,D为BC的中点,求a及AD的长.
展开
展开全部
(1)∵A+C=π-B,A,B∈(0,π),
∴sin(A+C)=sinB>0
又∵2bcosA=acosC+ccosA
∴2sinBcosA=sinAcosC+cosAsinC=sin(A+C)=sinB
结合sinB为正数,可得cosA=
.
∵A∈(0,π),
∴A=
.
(2)由(1)A=
,根据余弦定理可得
a2=b2+c2-2bccos
=4+1-2×2×1×
=3,
∴c=
.
因此cosB=
=0,可得B=
∴在Rt△ABD中,AD=
=
=
.
∴sin(A+C)=sinB>0
又∵2bcosA=acosC+ccosA
∴2sinBcosA=sinAcosC+cosAsinC=sin(A+C)=sinB
结合sinB为正数,可得cosA=
1 |
2 |
∵A∈(0,π),
∴A=
π |
3 |
(2)由(1)A=
π |
3 |
a2=b2+c2-2bccos
π |
3 |
1 |
2 |
∴c=
3 |
因此cosB=
a2+c2?b2 |
2ac |
π |
2 |
∴在Rt△ABD中,AD=
AB2+BD2 |
12+(
|
| ||
2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询