已知,如图,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,3),与x轴交于点A、B,点A的坐标为(3,0),
已知,如图,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,3),与x轴交于点A、B,点A的坐标为(3,0),点O为坐标原点.(1)求该抛物线的解析式;(2)若...
已知,如图,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,3),与x轴交于点A、B,点A的坐标为(3,0),点O为坐标原点.(1)求该抛物线的解析式;(2)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得OF+DF最小?若存在,请求出点P的坐标;若不存在,请说明理由.(3)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标.
展开
1个回答
展开全部
(1)将点A(3,0),点C(0,3)代入抛物线解析式:
,
解得:
,
故抛物线解析式:y=-x2+2x+3.
(2)存在.
如图所示:
作O′使O′与O关于直线AC对称,连接O'D,O'D交AC于F,过点F且平行于x的直线l与抛物线交于点P,点P为所求.
易求O′(3,3),设直线O′D的解析式:y=k1x+b,
则可得:
,
解得:
|
解得:
|
故抛物线解析式:y=-x2+2x+3.
(2)存在.
如图所示:
作O′使O′与O关于直线AC对称,连接O'D,O'D交AC于F,过点F且平行于x的直线l与抛物线交于点P,点P为所求.
易求O′(3,3),设直线O′D的解析式:y=k1x+b,
则可得:
|
解得:
|