(2013?宜兴市二模)如图,在平面直角坐标系中,O为坐标原点,⊙C的圆心坐标为(-2,-2),半径为2.函数

(2013?宜兴市二模)如图,在平面直角坐标系中,O为坐标原点,⊙C的圆心坐标为(-2,-2),半径为2.函数y=-x+2图象与x轴交于点A,与y轴交于点B,点P为线段A... (2013?宜兴市二模)如图,在平面直角坐标系中,O为坐标原点,⊙C的圆心坐标为(-2,-2),半径为2.函数y=-x+2图象与x轴交于点A,与y轴交于点B,点P为线段AB上一动点(包括端点).(1)连接CO,求证:CO⊥AB;(2)若△POA是等腰三角形,求点P的坐标;(3)当直线PO与⊙C相切时,求∠POA的度数;(4)当直线PO与⊙C相交时,设交点为E、F,点M为线段EF的中点,令PO=t,MO=s,求s与t之间的函数关系,并写出t的取值范围;设点M为线段EF的中点,试写出点M的运动轨迹,并直接写出点M运动轨迹的长度. 展开
 我来答
手机用户92488
2014-12-29 · 超过60用户采纳过TA的回答
知道答主
回答量:187
采纳率:0%
帮助的人:71.6万
展开全部
解答:解:(1)延长CO交AB于D,过点C作CG⊥x轴于点G.
∵函数y=-x+2图象与x轴交于点A,与y轴交于点B,
∴x=0时,y=2,y=0时,x=2,
∴A(2,0),B(0,2),
∴AO=BO=2.
又∵∠AOB=90°,
∴∠DAO=45°.
∵C(-2,-2),
∴∠COG=45°,∠AOD=45°,
∴∠ODA=90°.
∴OD⊥AB,即CO⊥AB;

(2)要使△POA为等腰三角形.
①当OP=OA时,P的坐标为(0,2),
②当OP=PA时,由∠OAB=45°,所以点P恰好是AB的中点,
所以点P的坐标为(1,1),
③当AP=AO时,则AP=2,
过点作PH⊥OA交OA于点H,
在Rt△APH中,则PH=AH=
2

∴OH=2-
2

∴点P的坐标为(2-
2
2
);

(3)如图2,当直线PO与⊙C相切时,设切点为K,连接CK,
则CK⊥OK.由点C的坐标为(-2,-2),
可得:CO=2
2

∵sin∠COK=
CK
CO
=
2
2
2
=
1
2

∴∠POD=30°,又∠AOD=45°,
∴∠POA=75°,
同理可求得∠POA的另一个值为45°-30°=15°;

(4)∵M为EF的中点,
∴CM⊥EF,
又∵∠COM=∠POD,CO⊥AB,
∴△COM∽△POD,
所以
CO
PO
MO
DO
,即MO?PO=CO?DO.
∵PO=t,MO=s,CO=2
2
,DO=
2

∴st=4.
但PO过圆心C时,MO=CO=2
2
,PO=DO=
2

即MO?PO=4,也满足st=4.
∴s=
4
t

∵OP最小值为
2
,当直线PO与⊙C相切时,∠POD=30°,
∴PO=
2
cos30°
=
2
6
3

∴t的取值范围是:
2
≤t<
2
6
3

由(3)可得,点M的运动路线是以点Q为圆心(Q点为OC与⊙C的交点),
2
为半径的一段圆弧,
 可得⊙C和⊙Q是两个等圆,可得∠GQK=120°
 弧GQK为实际运动路径,弧长=
2
2
3
π
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式