(2013?宜兴市二模)如图,在平面直角坐标系中,O为坐标原点,⊙C的圆心坐标为(-2,-2),半径为2.函数
(2013?宜兴市二模)如图,在平面直角坐标系中,O为坐标原点,⊙C的圆心坐标为(-2,-2),半径为2.函数y=-x+2图象与x轴交于点A,与y轴交于点B,点P为线段A...
(2013?宜兴市二模)如图,在平面直角坐标系中,O为坐标原点,⊙C的圆心坐标为(-2,-2),半径为2.函数y=-x+2图象与x轴交于点A,与y轴交于点B,点P为线段AB上一动点(包括端点).(1)连接CO,求证:CO⊥AB;(2)若△POA是等腰三角形,求点P的坐标;(3)当直线PO与⊙C相切时,求∠POA的度数;(4)当直线PO与⊙C相交时,设交点为E、F,点M为线段EF的中点,令PO=t,MO=s,求s与t之间的函数关系,并写出t的取值范围;设点M为线段EF的中点,试写出点M的运动轨迹,并直接写出点M运动轨迹的长度.
展开
展开全部
解答:解:(1)延长CO交AB于D,过点C作CG⊥x轴于点G.
∵函数y=-x+2图象与x轴交于点A,与y轴交于点B,
∴x=0时,y=2,y=0时,x=2,
∴A(2,0),B(0,2),
∴AO=BO=2.
又∵∠AOB=90°,
∴∠DAO=45°.
∵C(-2,-2),
∴∠COG=45°,∠AOD=45°,
∴∠ODA=90°.
∴OD⊥AB,即CO⊥AB;
(2)要使△POA为等腰三角形.
①当OP=OA时,P的坐标为(0,2),
②当OP=PA时,由∠OAB=45°,所以点P恰好是AB的中点,
所以点P的坐标为(1,1),
③当AP=AO时,则AP=2,
过点作PH⊥OA交OA于点H,
在Rt△APH中,则PH=AH=
,
∴OH=2-
,
∴点P的坐标为(2-
,
);
(3)如图2,当直线PO与⊙C相切时,设切点为K,连接CK,
则CK⊥OK.由点C的坐标为(-2,-2),
可得:CO=2
.
∵sin∠COK=
=
=
,
∴∠POD=30°,又∠AOD=45°,
∴∠POA=75°,
同理可求得∠POA的另一个值为45°-30°=15°;
(4)∵M为EF的中点,
∴CM⊥EF,
又∵∠COM=∠POD,CO⊥AB,
∴△COM∽△POD,
所以
=
,即MO?PO=CO?DO.
∵PO=t,MO=s,CO=2
,DO=
,
∴st=4.
但PO过圆心C时,MO=CO=2
,PO=DO=
,
即MO?PO=4,也满足st=4.
∴s=
,
∵OP最小值为
,当直线PO与⊙C相切时,∠POD=30°,
∴PO=
=
,
∴t的取值范围是:
≤t<
,
由(3)可得,点M的运动路线是以点Q为圆心(Q点为OC与⊙C的交点),
为半径的一段圆弧,
可得⊙C和⊙Q是两个等圆,可得∠GQK=120°
弧GQK为实际运动路径,弧长=
π.
∵函数y=-x+2图象与x轴交于点A,与y轴交于点B,
∴x=0时,y=2,y=0时,x=2,
∴A(2,0),B(0,2),
∴AO=BO=2.
又∵∠AOB=90°,
∴∠DAO=45°.
∵C(-2,-2),
∴∠COG=45°,∠AOD=45°,
∴∠ODA=90°.
∴OD⊥AB,即CO⊥AB;
(2)要使△POA为等腰三角形.
①当OP=OA时,P的坐标为(0,2),
②当OP=PA时,由∠OAB=45°,所以点P恰好是AB的中点,
所以点P的坐标为(1,1),
③当AP=AO时,则AP=2,
过点作PH⊥OA交OA于点H,
在Rt△APH中,则PH=AH=
2 |
∴OH=2-
2 |
∴点P的坐标为(2-
2 |
2 |
(3)如图2,当直线PO与⊙C相切时,设切点为K,连接CK,
则CK⊥OK.由点C的坐标为(-2,-2),
可得:CO=2
2 |
∵sin∠COK=
CK |
CO |
| ||
2
|
1 |
2 |
∴∠POD=30°,又∠AOD=45°,
∴∠POA=75°,
同理可求得∠POA的另一个值为45°-30°=15°;
(4)∵M为EF的中点,
∴CM⊥EF,
又∵∠COM=∠POD,CO⊥AB,
∴△COM∽△POD,
所以
CO |
PO |
MO |
DO |
∵PO=t,MO=s,CO=2
2 |
2 |
∴st=4.
但PO过圆心C时,MO=CO=2
2 |
2 |
即MO?PO=4,也满足st=4.
∴s=
4 |
t |
∵OP最小值为
2 |
∴PO=
| ||
cos30° |
2
| ||
3 |
∴t的取值范围是:
2 |
2
| ||
3 |
由(3)可得,点M的运动路线是以点Q为圆心(Q点为OC与⊙C的交点),
2 |
可得⊙C和⊙Q是两个等圆,可得∠GQK=120°
弧GQK为实际运动路径,弧长=
2
| ||
3 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询