记公差不为0的等差数列{an}的前n项和为Sn,S3=9,a3,a5,a8成等比数列.(Ⅰ)求数列{an}的通项公式an及
记公差不为0的等差数列{an}的前n项和为Sn,S3=9,a3,a5,a8成等比数列.(Ⅰ)求数列{an}的通项公式an及Sn;(Ⅱ)设bn=2n?an,求Tn=b1+b...
记公差不为0的等差数列{an}的前n项和为Sn,S3=9,a3,a5,a8成等比数列.(Ⅰ)求数列{an}的通项公式an及Sn;(Ⅱ)设bn=2n?an,求Tn=b1+b2+…+bn.
展开
1个回答
展开全部
(I)由a3,a5,a8成等比数列得a52=a3a8,又S3=9,(1分)
由此得
,解得,a1=2,d=1(5分)
∴an=n+1,Sn=
=
n2+
n(7分)
(II)bn=2n?an=(n+1)?2n
∴Tn=2?2+3?22+4?23+…+(n+1)?2n
2Tn=2?22+3?23+…+n?2n+(n+1)?2n+1(9分)
两式相减得,
-Tn=2?2+22+23+…+2n-(n+1)?2n+1
=2+
-(n+1)?2n+1(11分)
=-n?2n+1(12分)
∴Tn=n?2n+1(13分)
由此得
|
∴an=n+1,Sn=
n(2+n+1) |
2 |
1 |
2 |
3 |
2 |
(II)bn=2n?an=(n+1)?2n
∴Tn=2?2+3?22+4?23+…+(n+1)?2n
2Tn=2?22+3?23+…+n?2n+(n+1)?2n+1(9分)
两式相减得,
-Tn=2?2+22+23+…+2n-(n+1)?2n+1
=2+
2(1-2n) |
1-2 |
=-n?2n+1(12分)
∴Tn=n?2n+1(13分)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询