sinx的三次方,四次方,等等,求积分怎么做
∫sin^3xdx=-cosx+(1/3)cos^3x+C。∫(sinx)^4dx=(3/8)x-(1/4)sin2x+(1/32)sin4x+C。C为常数。总体思想,运用公式降幂。
∫sin^3xdx
=∫sin^2x sinxdx
=-∫(1-cos^2x)d(cosx)
=-∫d(cosx)+∫cos^2xd(cosx)
=-cosx+(1/3)cos^3x+C
∫(sinx)^4dx
=∫[(1/2)(1-cos2x]^2dx
=(1/4)∫[1-2cos2x+(cos2x)^2]dx
=(1/4)∫[1-2cos2x+(1/2)(1+cos4x)]dx
=(3/8)∫dx-(1/2)∫cos2xdx+(1/8)∫cos4xdx
=(3/8)∫dx-(1/4)∫cos2xd2x+(1/32)∫cos4xd4x
=(3/8)x-(1/4)sin2x+(1/32)sin4x+C
扩展资料:
二倍角公式
sin2α=2sinαcosα
tan2α=2tanα/(1-tan^2(α))
cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
半角公式
sin^2(α/2)=(1-cosα)/2
cos^2(α/2)=(1+cosα)/2
tan^2(α/2)=(1-cosα)/(1+cosα)
tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα
不定积分的公式
1、∫ a dx = ax + C,a和C都是常数
2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1
3、∫ 1/x dx = ln|x| + C
4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1
5、∫ e^x dx = e^x + C
6、∫ cosx dx = sinx + C
7、∫ sinx dx = - cosx + C
8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C
分出一个sin,凑成dcos,
剩下的sin偶次方都化成cos的形式,用【sinsin=1-coscos】。
偶次方时,
用【sinsin=(1-cos2x)/2,coscos=(1+cos2x)/2】降低次数,
直至降成最高次为一次的。