sinx的四次方的积分方法,如何解答?
sinx的四次方的积分需借助降幂公式求解。
具体解答过程:
=∫(sinx)^4dx
=∫(1-cos²x)²dx
=∫(1 - cos2x)/2)^2dx =∫(1 - 2cos2x + (cos2x)^2)/4 dx
=∫[1/4- 1/2cos2x + 1/8*(1 + cos4x)]dx
=∫[(cos4x)/8 - (cos2x)/2 + 3/8] dx
=(sin4x)/32 - (sin2x)/4 + (3x/8) + C
3.对于正弦函数积分而言,当次幂数为偶数时,应首先使用降幂公式,将次幂数降低,从而简化计算;当次幂数为奇数时,应先采用凑微分法,即sinxdx=-dcosx和cosxdx=dsinx将前面奇数次幂转化为偶数次幂,然后通过降幂公式进行求解。
扩展资料
在直角三角形中,∠α(不是直角)的对边与斜边的比叫做∠α的正弦,记作sinα,即sinα=∠α的对边/∠α的斜边 。sinα在拉丁文中计做sinus。
在古代的说法当中,正弦是勾与弦的比例。 古代说的“勾三股四弦五”中的“弦”,就是直角三角形中的斜边。 股就是人的大腿,古人称直角三角形中长的那个直角边为“股”。
正弦是∠α(非直角)的对边与斜边的比,余弦是∠α(非直角)的邻边与斜边的比。
勾股弦放到圆里。弦是圆周上两点连线。最大的弦是直径。 把直角三角形的弦放在直径上,股就是长的弦,即正弦,而勾就是短的弦,即余弦。
按现代说法,正弦是直角三角形某个角(非直角)的对边与斜边之比,即:对边/斜边。
参考资料:百度百科-sin(函数名称)