已知x^2+2/x(x+1)(x+2)=(A/x)+(B/x+1)+(C/x+2),求A,B,C的值 5
1个回答
展开全部
解:
(A/x)+(B/x+1)+(C/x+2)
=A(x+1)(x+2)/[x(x+1)(x+2)] +Bx(x+2)/[x(x+1)(x+2)] +Cx(x+1)[x(x+1)(x+2)]
=[(A+B+C)x²+(3A+2B+C)x+2A]/[x(x+1)(x+2)]
= x^2+2/x(x+1)(x+2)
所以:(A+B+C)x²+(3A+2B+C)x+2A==x²+2
=>A+B+C=1 3A+2B+C=0 2A=2
=>A=1 B=-3 C=3
(A/x)+(B/x+1)+(C/x+2)
=A(x+1)(x+2)/[x(x+1)(x+2)] +Bx(x+2)/[x(x+1)(x+2)] +Cx(x+1)[x(x+1)(x+2)]
=[(A+B+C)x²+(3A+2B+C)x+2A]/[x(x+1)(x+2)]
= x^2+2/x(x+1)(x+2)
所以:(A+B+C)x²+(3A+2B+C)x+2A==x²+2
=>A+B+C=1 3A+2B+C=0 2A=2
=>A=1 B=-3 C=3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询