如图,∠ABC与∠ACB的外角平分线交于点P,求∠P的度数
2个回答
展开全部
解:
∵∠A+∠ABC+∠ACB=180
∴∠ABC+∠ACB=180-∠A
∵BP平分∠CBD,∠CBD=180-∠ABC
∴∠CBP=∠CBD/2=(180-∠ABC)/2=90-∠ABC/2
∵CP平分∠BCE,∠BCE=180-∠ACB
∴∠BCP=∠BCE/2=(180-∠ACB)/2=90-∠ACB/2
∴∠P=180-(∠CBP+∠BCP)
=180-(90-∠ABC/2+90-∠ACB/2)
=(∠ABC+∠ACB)/2
=(180-∠A)/2
∵∠A=50
∴∠P=(180-50)/2=65
∵∠A+∠ABC+∠ACB=180
∴∠ABC+∠ACB=180-∠A
∵BP平分∠CBD,∠CBD=180-∠ABC
∴∠CBP=∠CBD/2=(180-∠ABC)/2=90-∠ABC/2
∵CP平分∠BCE,∠BCE=180-∠ACB
∴∠BCP=∠BCE/2=(180-∠ACB)/2=90-∠ACB/2
∴∠P=180-(∠CBP+∠BCP)
=180-(90-∠ABC/2+90-∠ACB/2)
=(∠ABC+∠ACB)/2
=(180-∠A)/2
∵∠A=50
∴∠P=(180-50)/2=65
来自:求助得到的回答
展开全部
解:
∵∠A+∠ABC+∠ACB=180
∴∠ABC+∠ACB=180-∠A
∵BP平分∠CBD,∠CBD=180-∠ABC
∴∠CBP=∠CBD/2=(180-∠ABC)/2=90-∠ABC/2
∵CP平分∠BCE,∠BCE=180-∠ACB
∴∠BCP=∠BCE/2=(180-∠ACB)/2=90-∠ACB/2
∴∠P=180-(∠CBP+∠BCP)
=180-(90-∠ABC/2+90-∠ACB/2)
=(∠ABC+∠ACB)/2
=(180-∠A)/2
∵∠A=50
∴∠P=(180-50)/2=65
∵∠A+∠ABC+∠ACB=180
∴∠ABC+∠ACB=180-∠A
∵BP平分∠CBD,∠CBD=180-∠ABC
∴∠CBP=∠CBD/2=(180-∠ABC)/2=90-∠ABC/2
∵CP平分∠BCE,∠BCE=180-∠ACB
∴∠BCP=∠BCE/2=(180-∠ACB)/2=90-∠ACB/2
∴∠P=180-(∠CBP+∠BCP)
=180-(90-∠ABC/2+90-∠ACB/2)
=(∠ABC+∠ACB)/2
=(180-∠A)/2
∵∠A=50
∴∠P=(180-50)/2=65
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询