如图,Rt△AB′C′是由Rt△ABC绕点A顺时针旋转得到的,连接CC′交斜边于点E,CC′的延长线交BB′于点F
8个回答
展开全部
(2)证明:∵Rt△AB′C′是由Rt△ABC绕点A顺时针旋转得到的,
∴AC=AC′,AB=AB′,∠CAB=∠C′AB′,(1分)
∴∠CAC′=∠BAB′,
∴∠ABB′=∠AB′B=∠ACC′=∠AC′C,
∴∠ACC′=∠ABB′,(3分)
又∵∠AEC=∠FEB,
∴△ACE∽△FBE.(4分)
(3)解:当β=2α时,△ACE≌△FBE.(5分)
理由:
在△ACC′中,
∵AC=AC′,
∴∠ACC′=90°-α,(6分)
在Rt△ABC中,
∠ACC′+∠BCE=90°,
即90°-α+∠BCE=90°,
∴∠BCE=90°-90°+α=α,
∵∠ABC=α,
∴∠ABC=∠BCE,(8分)
∴CE=BE,
由(2)知:△ACE∽△FBE,
∴△ACE≌△FBE.(9分)
∴AC=AC′,AB=AB′,∠CAB=∠C′AB′,(1分)
∴∠CAC′=∠BAB′,
∴∠ABB′=∠AB′B=∠ACC′=∠AC′C,
∴∠ACC′=∠ABB′,(3分)
又∵∠AEC=∠FEB,
∴△ACE∽△FBE.(4分)
(3)解:当β=2α时,△ACE≌△FBE.(5分)
理由:
在△ACC′中,
∵AC=AC′,
∴∠ACC′=90°-α,(6分)
在Rt△ABC中,
∠ACC′+∠BCE=90°,
即90°-α+∠BCE=90°,
∴∠BCE=90°-90°+α=α,
∵∠ABC=α,
∴∠ABC=∠BCE,(8分)
∴CE=BE,
由(2)知:△ACE∽△FBE,
∴△ACE≌△FBE.(9分)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明:∵Rt△AB′C′是由Rt△ABC绕点A顺时针旋转得到的,
∴AC=AC′,AB=AB′,∠CAB=∠C′AB′,(1分)
∴∠CAC′=∠BAB′,
∴∠ABB′=∠AB′B=∠ACC′=∠AC′C,
∴∠ACC′=∠ABB′,(3分)
又∵∠AEC=∠FEB,
∴△ACE∽△FBE.(4分)
(3)解:当β=2α时,△ACE≌△FBE.(5分)
理由:
在△ACC′中,
∵AC=AC′,
∴∠ACC′=90°-α,(6分)
在Rt△ABC中,
∠ACC′+∠BCE=90°,
即90°-α+∠BCE=90°,
∴∠BCE=90°-90°+α=α,
∵∠ABC=α,
∴∠ABC=∠BCE,(8分)
∴CE=BE,
由(2)知:△ACE∽△FBE,
∴△ACE≌△FBE.(9分)
∴AC=AC′,AB=AB′,∠CAB=∠C′AB′,(1分)
∴∠CAC′=∠BAB′,
∴∠ABB′=∠AB′B=∠ACC′=∠AC′C,
∴∠ACC′=∠ABB′,(3分)
又∵∠AEC=∠FEB,
∴△ACE∽△FBE.(4分)
(3)解:当β=2α时,△ACE≌△FBE.(5分)
理由:
在△ACC′中,
∵AC=AC′,
∴∠ACC′=90°-α,(6分)
在Rt△ABC中,
∠ACC′+∠BCE=90°,
即90°-α+∠BCE=90°,
∴∠BCE=90°-90°+α=α,
∵∠ABC=α,
∴∠ABC=∠BCE,(8分)
∴CE=BE,
由(2)知:△ACE∽△FBE,
∴△ACE≌△FBE.(9分)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:(1)证法一:∵△AED是由△ABC绕点A顺时针旋转得到的,
∴∠BAC=∠DAE=72°,∠BAD=∠CAE,AB=AD,AC=AE(3分)
∴∠ABD=
180°-∠BAD
2
=
180°-∠BAD
2
=∠ECA,(5分)
又∵∠BGA=∠CGF∴△ABG∽△FCG(7分)
证法二:∵△AED是由△ABC绕点A顺时针旋转得到的,
∴∠BAC=∠DAE=72°,∠BAD=∠CAE,AB=AD,AC=AE(3分)
∴
AB
AC
=
AD
AE
,∴△ABD∽△ACE,∴∠DBA=∠ECA(4分)
又∵∠BGA=∠CGF,∴△ABG∽△FCG(7分)
(2)答:存在(8分)
由(1)知△ABG∽△FCG,∴当BG=CG时,△ABG≌△FCG,
∵∠ABC=∠CAB=72°,∴∠BCA=36°,又△ABG≌△FCG(已知)∴GB=GC,∴∠GCB=∠GBC=36°
又BA=AD∴∠FBA=∠BDA=72°-36°=36°,∴∠BAD=108°,又∠CAB=∠DAE,所以∠CAE=∠BAD=108°
即∠α=∠CAE=108°.
∴∠BAC=∠DAE=72°,∠BAD=∠CAE,AB=AD,AC=AE(3分)
∴∠ABD=
180°-∠BAD
2
=
180°-∠BAD
2
=∠ECA,(5分)
又∵∠BGA=∠CGF∴△ABG∽△FCG(7分)
证法二:∵△AED是由△ABC绕点A顺时针旋转得到的,
∴∠BAC=∠DAE=72°,∠BAD=∠CAE,AB=AD,AC=AE(3分)
∴
AB
AC
=
AD
AE
,∴△ABD∽△ACE,∴∠DBA=∠ECA(4分)
又∵∠BGA=∠CGF,∴△ABG∽△FCG(7分)
(2)答:存在(8分)
由(1)知△ABG∽△FCG,∴当BG=CG时,△ABG≌△FCG,
∵∠ABC=∠CAB=72°,∴∠BCA=36°,又△ABG≌△FCG(已知)∴GB=GC,∴∠GCB=∠GBC=36°
又BA=AD∴∠FBA=∠BDA=72°-36°=36°,∴∠BAD=108°,又∠CAB=∠DAE,所以∠CAE=∠BAD=108°
即∠α=∠CAE=108°.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)证明:∵Rt△AB′C′是由Rt△ABC绕点A顺时针旋转得到的,
∴AC=AC′,AB=AB′,∠CAB=∠C′AB′,
∴∠CAC′=∠BAB′,
∴∠ABB′=∠AB′B=∠ACC′=∠AC′C,
∴∠ACC′=∠ABB′,
又∵∠AEC=∠FEB,
∴△ACE∽△FBE.
(2)解:当β=2α时,△ACE≌△FBE.
在△ACC′中,
∵AC=AC′,
∴∠ACC′=180°-∠CAC′ 2 =180°-β 2 =90°-α,
在Rt△ABC中,
∠ACC′+∠BCE=90°,即90°-α+∠BCE=90°,
∴∠BCE=α,
∵∠ABC=α,
∴∠ABC=∠BCE,
∴CE=BE,
由(1)知:△ACE∽△FBE,
∴∠BEF=∠CEA,∠FBE=∠ACE,
又∵CE=BE,
∴△ACE≌△FBE.
∴AC=AC′,AB=AB′,∠CAB=∠C′AB′,
∴∠CAC′=∠BAB′,
∴∠ABB′=∠AB′B=∠ACC′=∠AC′C,
∴∠ACC′=∠ABB′,
又∵∠AEC=∠FEB,
∴△ACE∽△FBE.
(2)解:当β=2α时,△ACE≌△FBE.
在△ACC′中,
∵AC=AC′,
∴∠ACC′=180°-∠CAC′ 2 =180°-β 2 =90°-α,
在Rt△ABC中,
∠ACC′+∠BCE=90°,即90°-α+∠BCE=90°,
∴∠BCE=α,
∵∠ABC=α,
∴∠ABC=∠BCE,
∴CE=BE,
由(1)知:△ACE∽△FBE,
∴∠BEF=∠CEA,∠FBE=∠ACE,
又∵CE=BE,
∴△ACE≌△FBE.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
AC=AC' 所以△ACC'是等腰三角形,所以角ACC'=角AC'C; 同理△ABB'是等腰,角ABB'=角AB'B,又由于角CAC'=角BAB'(角CAC'=角CAB+角BAC'=角C'AB'+角BAC',以上两个等腰三角形的顶角相等)可知它们的底角相等,所以角ACC'=角ABB',又因为角ACE=角FEB(对顶角相等),所以△ACE∽△FBE(有两个角对应相等的三角形相似)。证毕。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询