已知三角形ABC中,a,b,c分别是角A,B,C的对边,且(2a+c)cosB+bcosC=0
展开全部
解:①(2a+c)cosB+bcosC=0
2a*cosB+c*cosB+b*cosC=0
2a*cosB + a = 0
cosB = -1/2
B=120°
② b^2 = a^2+c^2-2ac*cosB
13 = a^2 + c^2 - 2ac * (-1/2)
a^2+c^2+ac = 13
(a+c)^2-ac =13
16-ac=13
ac = 3
S = 1/2ac*sinB = 1/2 ×3×√3/2 =3√3/4
2a*cosB+c*cosB+b*cosC=0
2a*cosB + a = 0
cosB = -1/2
B=120°
② b^2 = a^2+c^2-2ac*cosB
13 = a^2 + c^2 - 2ac * (-1/2)
a^2+c^2+ac = 13
(a+c)^2-ac =13
16-ac=13
ac = 3
S = 1/2ac*sinB = 1/2 ×3×√3/2 =3√3/4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
①利用正弦定理可把(2a+c)cosB+bcosC=0转化为
(2sinA+sinC)cosB+sinBcosC=0
得2sinAcosB+sinCcosB+sinBcosC=0
得2sinAcosB+sin(C+B)=0
得2sinAcosB+sinA=0
得2cosB+1=0
得cosB=-1/2,得B=120
② b^2 = a^2+c^2-2ac*cosB
13 = a^2 + c^2 - 2ac * (-1/2)
a^2+c^2+ac = 13
(a+c)^2-ac =13
16-ac=13
ac = 3
S = 1/2ac*sinB = 1/2 ×3×√3/2 =3√3/4
(2sinA+sinC)cosB+sinBcosC=0
得2sinAcosB+sinCcosB+sinBcosC=0
得2sinAcosB+sin(C+B)=0
得2sinAcosB+sinA=0
得2cosB+1=0
得cosB=-1/2,得B=120
② b^2 = a^2+c^2-2ac*cosB
13 = a^2 + c^2 - 2ac * (-1/2)
a^2+c^2+ac = 13
(a+c)^2-ac =13
16-ac=13
ac = 3
S = 1/2ac*sinB = 1/2 ×3×√3/2 =3√3/4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询