点O为坐标原点,抛物线y=ax2-2ax+3/2 与x轴交于点A、B,抛物线的顶点为C,直线AC交y轴于点D,D为AC的中点.
在平面直角坐标系中,点O为坐标原点,抛物线y=ax2-2ax+与x轴交于点A、B(点A在点B的左侧),抛物线的顶点为C,直线AC交y轴于点D,D为AC的中点.(1)如图1...
在平面直角坐标系中,点O为坐标原点,抛物线y=ax2-2ax+ 与x轴交于点A、B(点A在点B的左侧),抛物线的顶点为C,直线AC交y轴于点D,D为AC的中点.
(1)如图1,求抛物线的顶点坐标;
(2)如图2,点P为抛物线对称轴右侧上的一动点,过点P作PQ⊥AC于点Q,设点P的横坐标为t,点Q的横坐标为m,求m与t的函数关系式;
(3)在(2)的条件下,如图3,连接AP,过点C作CE⊥AP于点E,连接BE、CE分别交PQ于F、G两点,当点F是PG中点时,求点P的坐标.
第3问怎么求P点坐标 展开
(1)如图1,求抛物线的顶点坐标;
(2)如图2,点P为抛物线对称轴右侧上的一动点,过点P作PQ⊥AC于点Q,设点P的横坐标为t,点Q的横坐标为m,求m与t的函数关系式;
(3)在(2)的条件下,如图3,连接AP,过点C作CE⊥AP于点E,连接BE、CE分别交PQ于F、G两点,当点F是PG中点时,求点P的坐标.
第3问怎么求P点坐标 展开
1个回答
展开全部
题目(2012•温州模拟)如图,抛物线y1=ax2−2ax+b的顶点为D,与x轴交于点A,B,与y轴交于点C,且OB=2OC=3.
(1)求a,b的值;
(2)将45°角的顶点P在线段OB上滑动(不与点B重合),该角的一边过点D,另一边与BD交于点Q,设P(x,0),y2=
2DQ,试求出y2关于x的函数关系式;
(3)在同一平面直角坐标系中,两条直线x=m,x=m+12分别与抛物线y1交于点E,G,与y2的函数图象交于点F,H.问点E、F、H、G围成四边形的面积能否为532?若能,求出m的值;若不能,请说明理由.
(1)求a,b的值;
(2)将45°角的顶点P在线段OB上滑动(不与点B重合),该角的一边过点D,另一边与BD交于点Q,设P(x,0),y2=
2DQ,试求出y2关于x的函数关系式;
(3)在同一平面直角坐标系中,两条直线x=m,x=m+12分别与抛物线y1交于点E,G,与y2的函数图象交于点F,H.问点E、F、H、G围成四边形的面积能否为532?若能,求出m的值;若不能,请说明理由.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询