急!如图所示,一光滑的半径为R的半圆形轨道固定在水平面上,一个质量为m的小球...

以某一速度冲上轨道,最终小球将要从轨道口飞出。1、如小球刚好从C点飞出,(脱离轨道),则小球在c点的速度多大?2、如小球刚好能从D点飞出,则小球经过B点时对轨道压力多大?... 以某一速度冲上轨道,最终小球将要从轨道口飞出。
1、如小球刚好从C点飞出,(脱离轨道),则小球在c点的速度多大?
2、如小球刚好能从D点飞出,则小球经过B点时对轨道压力多大?
展开
2574934018
推荐于2017-10-14 · TA获得超过4527个赞
知道小有建树答主
回答量:1212
采纳率:85%
帮助的人:501万
展开全部
如果是mg/cos30°,这就表示你对力的合成和分解理解的不够。
因为按照你这分解,重力是对应的直角边,斜边才是向心力F(但实际上F仅仅是向心力的一部分而已,也就是说你给出的mg/cos30°仅仅是其中的一部分),但是请注意此时除开重力之外没有外力可以提供向心力,因此在你这种分解的前提下,另外一个分力f在半径方向上同样会有一个分力(因为f和半径之间的夹角是60°),于是你还必须要把这个分力计算上去才行,并且要注意发的方向是从圆心指向园外的,大小就是mg(sin30°)^2/cos30°,两者方向相反,所以就是mg/cos30°-mg(sin30°)^2/cos30°,得到的结果还是mgcos30°
综上可以看出,矢量合成理论上来讲是可以任意分解的,但是我们在做题目的时候必须要结合具体的物理意义来进行取舍,这决定着你解题的速度,同时也显示出了解题者的能力。
我们之所以把半径作为其中一个坐标轴,然后沿着他和垂直于他的两个方向上进行分解,是因为这样分解的话另外一个分量刚好和半径方向垂直,所以不会影响半径方向上的力的大小和力学方程,除此之外,你当然也可以任意分解,但是此时你要注意到的是分解之后的两个分量在半径方向上的投影(分量)都不为零,于是你需要吧两个都计算进去,这又加大了难度。
极限情况,你可以把重力分解成无穷多个分量,其中每个分量在半径上的分量你都要计算,这就是最复杂同时又是最没有用的方法。
nannan046
2012-03-14 · TA获得超过136个赞
知道答主
回答量:51
采纳率:0%
帮助的人:18.1万
展开全部
小球从c飞出则其不受轨道的力,mv^2/R=mgcos15.若从D飞出.......
追问
抱歉我图没画清,每个小角30°。
可偶觉得等于mg/cos30°.......
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式