证明ln2/(2^4) + ln3/(3^4) +...+lnn/(n^4) <1/e

sswwaass
2012-03-18 · TA获得超过187个赞
知道答主
回答量:94
采纳率:0%
帮助的人:53.2万
展开全部
ln(n)/n^4 = ln(n)/n^2*1/n^2 < ln(n)/n^2*(1/(n(n-1))
= ln(n)/n^2(1/(n-1)-1/n)<1/(2e)(1/(n-1)-1/n)
因此:ln2/(2^4) + ln3/(3^4) +...+lnn/(n^4)<1/(2e)(1-1/2+1/2-1/3+...+1/(n-1)-1/n) = 1/(2e)(1-1/n)<1/(2e)<1/e;

因此本题的更强的不等式是 <1/(2e)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式