2个回答
展开全部
原式=2 ∫cos(x/2)cos(nx) d(x/2)
=2 ∫cos(nx) d[sin(x/2)]
=(2/n) ∫cos(nx) d[sin(nx/2)]
=(2/n) ∫[1-2(sin(nx/2)^2)] d[sin(nx/2)] 关键在于将cos(nx)按照2倍角展开
=(2/n) {∫d[sin(x/2)]-2∫[sin(nx/2)]^2 d[sin(nx/2)]}
=(2/n) [sin(nx/2)]-(2/3)[sin(nx/2)^3]
=(1/n)sin(nx/2)-(4/3n)[sin(nx/2)^3]
=2 ∫cos(nx) d[sin(x/2)]
=(2/n) ∫cos(nx) d[sin(nx/2)]
=(2/n) ∫[1-2(sin(nx/2)^2)] d[sin(nx/2)] 关键在于将cos(nx)按照2倍角展开
=(2/n) {∫d[sin(x/2)]-2∫[sin(nx/2)]^2 d[sin(nx/2)]}
=(2/n) [sin(nx/2)]-(2/3)[sin(nx/2)^3]
=(1/n)sin(nx/2)-(4/3n)[sin(nx/2)^3]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询