已知函数f(x)=sinx+cosx.
(1)若f(x)=2f(-x),(cos2的平方x-sinxcosx)/(1+sin2的平方x)的值;(2)求函数F(x)=f(x)f(-x)+f2的平方(x)的最大值和...
(1)若f(x)=2f(-x),(cos2的平方x-sinxcosx)/(1+sin2的平方x)的值;
(2)求函数F(x)=f(x)f(-x)+f2的平方(x)的最大值和单调递增区间. 展开
(2)求函数F(x)=f(x)f(-x)+f2的平方(x)的最大值和单调递增区间. 展开
2个回答
展开全部
f(x)=2f(-x)
sinx+cosx=2(sin(-x)+cos(-x))=2(-sinx+cosx)=-2sinx+2cosx
即有:3sinx=cosx, tanx=1/3
(sinx)^2+(cosx)^2=1
10(sinx)^2=1
(sinx)^2=1/10
(cosx)^2=9/10
(cos^2x-sinxcosx)/(1+sin^2x)
=(cos^2x-3sin^2x)/(1+sin^2x)
=(9/10-3*1/10)/(1+1/10)
=6/11
(2)
F(x)=f(x)f(-x)+[f(x)]^2=(sinx+cosx)(-sinx+cosx)+(sinx+cosx)^2=(cosx)^2-(sinx)^2+1+2sinxcosx
=cos2x+sin2x+1
=根号2*sin(2x+Pai/4)+1
所以,当sin(2x+Pai/4)=1时,F(X)有最大值是:根号2+1
单调增区间是:2kPai-Pai/2<=2x+Pai/4<=2kPai+Pai/2
即是[KPai-3Pai/8,kPai+Pai/8]
sinx+cosx=2(sin(-x)+cos(-x))=2(-sinx+cosx)=-2sinx+2cosx
即有:3sinx=cosx, tanx=1/3
(sinx)^2+(cosx)^2=1
10(sinx)^2=1
(sinx)^2=1/10
(cosx)^2=9/10
(cos^2x-sinxcosx)/(1+sin^2x)
=(cos^2x-3sin^2x)/(1+sin^2x)
=(9/10-3*1/10)/(1+1/10)
=6/11
(2)
F(x)=f(x)f(-x)+[f(x)]^2=(sinx+cosx)(-sinx+cosx)+(sinx+cosx)^2=(cosx)^2-(sinx)^2+1+2sinxcosx
=cos2x+sin2x+1
=根号2*sin(2x+Pai/4)+1
所以,当sin(2x+Pai/4)=1时,F(X)有最大值是:根号2+1
单调增区间是:2kPai-Pai/2<=2x+Pai/4<=2kPai+Pai/2
即是[KPai-3Pai/8,kPai+Pai/8]
展开全部
(1) 由:f(x)=2f(-x),得:sinx+cosx=2(- sinx+cosx)
tanx= 1/3.
所以:(cos²x-sinxcosx)/(1+sin²x)=(cos²x-sinxcosx)/(2sin²x+cos²x)=(1- tanx)/(2tan²x+1)
=(1 1/3)/(1/9+1)=6/10=3/5
(2)F(x)=f(x)f(-x)+f²(x)=(sinx+cosx)(- sinx+cosx)+(sinx+cosx)²
=cos²x - sin²x+ 1+2sinxcosx=cos2x+sin2x+1=√2 sin(2x+π/4)+1
当:2x+π/4=2kπ+π/2 x=kπ+π/8时:
F(x)有最大值=√2+1
当:2kπ- π/2≤2x+π/4≤2kπ+π/2
即:kπ- 3π/8≤x≤kπ+π/8时,
F(x)单调递增.
tanx= 1/3.
所以:(cos²x-sinxcosx)/(1+sin²x)=(cos²x-sinxcosx)/(2sin²x+cos²x)=(1- tanx)/(2tan²x+1)
=(1 1/3)/(1/9+1)=6/10=3/5
(2)F(x)=f(x)f(-x)+f²(x)=(sinx+cosx)(- sinx+cosx)+(sinx+cosx)²
=cos²x - sin²x+ 1+2sinxcosx=cos2x+sin2x+1=√2 sin(2x+π/4)+1
当:2x+π/4=2kπ+π/2 x=kπ+π/8时:
F(x)有最大值=√2+1
当:2kπ- π/2≤2x+π/4≤2kπ+π/2
即:kπ- 3π/8≤x≤kπ+π/8时,
F(x)单调递增.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询