初二勾股定理题
展开全部
1. 直角三角形一直角边长为12,另两条边长均为自然数,则其周长为( ).
(A)30 (B)28 (C)56 (D)不能确定
2. 直角三角形的斜边比一直角边长2 cm,另一直角边长为6 cm,则它的斜边长
(A)4 cm (B)8 cm (C)10 cm (D)12 cm
3. 已知一个Rt△的两边长分别为3和4,则第三边长的平方是( )
(A)25 (B)14 (C)7 (D)7或25
4. 等腰三角形的腰长为10,底长为12,则其底边上的高为( )
(A)13 (B)8 (C)25 (D)64
5. 五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )
6. 将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( )
(A) 钝角三角形 (B) 锐角三角形 (C) 直角三角形 (D) 等腰三角形.
7. 如图小方格都是边长为1的正方形,则四边形ABCD的面积是 ( )
(A) 25 (B) 12.5 (C) 9 (D) 8.5
8. 三角形的三边长为 ,则这个三角形是( )
(A) 等边三角形 (B) 钝角三角形
(C) 直角三角形 (D) 锐角三角形.
9.△ABC是某市在拆除违章建筑后的一块三角形空地.已知∠C=90°,AC=30米,AB=50米,如果要在这块空地上种植草皮,按每平方米草皮 元计算,那么共需要资金( ).
(A)50 元 (B)600 元 (C)1200 元 (D)1500 元
10.如图,AB⊥CD于B,△ABD和△BCE都是等腰直角三角形,如果CD=17,BE=5,那么AC的长为( ).
(A)12 (B)7 (C)5 (D)13
(第10题) (第11题) (第14题)
二、填空题(每小题3分,24分)
11. 如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要____________米.
12. 在直角三角形 中,斜边 =2,则 =______.
13. 直角三角形的三边长为连续偶数,则其周长为 .
14. 如图,在△ABC中,∠C=90°,BC=3,AC=4.以斜边AB为直径作半圆,则这个半圆的面积是____________.
(第15题) (第16题) (第17题)
15. 如图,校园内有两棵树,相距12米,一棵树高13米,另一棵树高8米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞___________米.
16. 如图,△ABC中,∠C=90°,AB垂直平分线交BC于D若BC=8,AD=5,则AC等于______________.
17. 如图,四边形 是正方形, 垂直于 ,且 =3, =4,阴影部分的面积是______.
18. 如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm,则正方形A,B,C,D的面积之和为___________cm2.
三、解答题(每小题8分,共40分)
19. 11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题:
“小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树跟有多远?
20. 如图,已知一等腰三角形的周长是16,底边上的高是4.求这个三角形各边的长.
21. 如图,A、B两个小集镇在河流CD的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A、B两镇供水,铺设水管的费用为每千米3万,请你在河流CD上选择水厂的位置M,使铺设水管的费用最节省,并求出总费用是多少?
参考答案
一、选择题(每小题3分,共30分)
1.(D);2.(C);3.(D);4.(B);5.(C);
6.(C);7.(B);8.(C);9.(B);10.(D);
二、填空题(每小题3分,24分)
11.7;12.8;13.24;14. ; 15. 13;
16.4;17.19;18.49;
三、解答题
19.20;
20. 设BD=x,则AB=8-x
由勾股定理,可以得到AB2=BD2+AD2,也就是(8-x)2=x2+42.
所以x=3,所以AB=AC=5,BC=6
21.作A点关于CD的对称点A′,连结B A′,与CD交于点E,则E点即为所求.总费用150万元.
别忘了赞同
(A)30 (B)28 (C)56 (D)不能确定
2. 直角三角形的斜边比一直角边长2 cm,另一直角边长为6 cm,则它的斜边长
(A)4 cm (B)8 cm (C)10 cm (D)12 cm
3. 已知一个Rt△的两边长分别为3和4,则第三边长的平方是( )
(A)25 (B)14 (C)7 (D)7或25
4. 等腰三角形的腰长为10,底长为12,则其底边上的高为( )
(A)13 (B)8 (C)25 (D)64
5. 五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )
6. 将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( )
(A) 钝角三角形 (B) 锐角三角形 (C) 直角三角形 (D) 等腰三角形.
7. 如图小方格都是边长为1的正方形,则四边形ABCD的面积是 ( )
(A) 25 (B) 12.5 (C) 9 (D) 8.5
8. 三角形的三边长为 ,则这个三角形是( )
(A) 等边三角形 (B) 钝角三角形
(C) 直角三角形 (D) 锐角三角形.
9.△ABC是某市在拆除违章建筑后的一块三角形空地.已知∠C=90°,AC=30米,AB=50米,如果要在这块空地上种植草皮,按每平方米草皮 元计算,那么共需要资金( ).
(A)50 元 (B)600 元 (C)1200 元 (D)1500 元
10.如图,AB⊥CD于B,△ABD和△BCE都是等腰直角三角形,如果CD=17,BE=5,那么AC的长为( ).
(A)12 (B)7 (C)5 (D)13
(第10题) (第11题) (第14题)
二、填空题(每小题3分,24分)
11. 如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要____________米.
12. 在直角三角形 中,斜边 =2,则 =______.
13. 直角三角形的三边长为连续偶数,则其周长为 .
14. 如图,在△ABC中,∠C=90°,BC=3,AC=4.以斜边AB为直径作半圆,则这个半圆的面积是____________.
(第15题) (第16题) (第17题)
15. 如图,校园内有两棵树,相距12米,一棵树高13米,另一棵树高8米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞___________米.
16. 如图,△ABC中,∠C=90°,AB垂直平分线交BC于D若BC=8,AD=5,则AC等于______________.
17. 如图,四边形 是正方形, 垂直于 ,且 =3, =4,阴影部分的面积是______.
18. 如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm,则正方形A,B,C,D的面积之和为___________cm2.
三、解答题(每小题8分,共40分)
19. 11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题:
“小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树跟有多远?
20. 如图,已知一等腰三角形的周长是16,底边上的高是4.求这个三角形各边的长.
21. 如图,A、B两个小集镇在河流CD的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A、B两镇供水,铺设水管的费用为每千米3万,请你在河流CD上选择水厂的位置M,使铺设水管的费用最节省,并求出总费用是多少?
参考答案
一、选择题(每小题3分,共30分)
1.(D);2.(C);3.(D);4.(B);5.(C);
6.(C);7.(B);8.(C);9.(B);10.(D);
二、填空题(每小题3分,24分)
11.7;12.8;13.24;14. ; 15. 13;
16.4;17.19;18.49;
三、解答题
19.20;
20. 设BD=x,则AB=8-x
由勾股定理,可以得到AB2=BD2+AD2,也就是(8-x)2=x2+42.
所以x=3,所以AB=AC=5,BC=6
21.作A点关于CD的对称点A′,连结B A′,与CD交于点E,则E点即为所求.总费用150万元.
别忘了赞同
展开全部
1、在Rt△ABC中,∠C=90°,①若a=5,b=12,则c=___________;②若a=15,c=25,则b=___________;③若c=61,b=60,则a=__________;④若a∶b=3∶4,c=10则SRt△ABC=________
2、等腰三角形的腰长为13,底边长为10,则顶角的平分线为
3、一个三角形的三边之比为5∶12∶13,它的周长为60,则它的面积是?
4、在Rt△ABC中,斜边AB=2,则AB^2+BC^2+AC^2= ?
5、在△ABC中, 角C=90度,若a+b=7, △ABC的面积等于6,则边长c= ?
2、等腰三角形的腰长为13,底边长为10,则顶角的平分线为
3、一个三角形的三边之比为5∶12∶13,它的周长为60,则它的面积是?
4、在Rt△ABC中,斜边AB=2,则AB^2+BC^2+AC^2= ?
5、在△ABC中, 角C=90度,若a+b=7, △ABC的面积等于6,则边长c= ?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询