已知数列{an}满足:a1=1,an+1=1/2an+n,n 为奇数,an-2n,n 为偶数.设bn=a2n+1+4n-2,n€N

求证:数列{bn}是等比数列,并求其通项公式。(2)求数列an的前100项中,所有奇数项的和S... 求证:数列{bn}是等比数列,并求其通项公式。(2)求数列an的前100项中,所有奇数项的和S 展开
暖眸敏1V
2012-03-18 · TA获得超过9.6万个赞
知道大有可为答主
回答量:1.8万
采纳率:90%
帮助的人:9789万
展开全部
bn=a(2n+1)+4n-2
b(n+1)=a(2n+3)+4n+2
=a(2n+2)-2(2n+2)+4n+2
=1/2a(2n+1)+2n-1
=1/2[a(2n+1)+4n-2]
∴b(n+1)/bn=1/2
∴数列{bn}是等比数列,公比为1/2
b1=a3+2=a2-4+2=1/2a1+1-2=-1/2
bn=-(1/2)^n
2
∵bn=a(2n+1)+4n-2
∴a(2n+1)=bn-4n+2=-1/2^n-4n+2
S=a1+a3+a5+....+a99
=1+(-1/2-1/4-1/8-...-1/2^49)-4(1+2+3+...+49)+2·49
=1-(1-1/2^49)-2*49*50+98
= 1/2^49-4802
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式