3个回答
展开全部
(4) I = ∫<0, +∞> dx/[(1+x)(1+x^2)]
= (1/2)∫<0, +∞> [1/(1+x) + (1-x)/(1+x^2)]dx
= (1/2)∫<0, +∞> [1/(1+x) + 1/(1+x^2) - x/(1+x^2)]dx
= (1/2)[ln(1+x) + arctanx - (1/2)ln(1+x^2)]<0, +∞>
= (1/2) [ln{(1+x)/√(1+x^2)} + arctanx]<0, +∞>
= (1/2)[lim<x→+∞>ln{(1+x)/√(1+x^2)} + π/2]
= (1/2)[lim<x→+∞>ln{(1/x+1)/√(1/x^2+1)} + π/2] = π/4
= (1/2)∫<0, +∞> [1/(1+x) + (1-x)/(1+x^2)]dx
= (1/2)∫<0, +∞> [1/(1+x) + 1/(1+x^2) - x/(1+x^2)]dx
= (1/2)[ln(1+x) + arctanx - (1/2)ln(1+x^2)]<0, +∞>
= (1/2) [ln{(1+x)/√(1+x^2)} + arctanx]<0, +∞>
= (1/2)[lim<x→+∞>ln{(1+x)/√(1+x^2)} + π/2]
= (1/2)[lim<x→+∞>ln{(1/x+1)/√(1/x^2+1)} + π/2] = π/4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询