secx/tanx的不定积分怎么求?
∫secx/tanxdx=ln|cscx - cotx| + C。C为常数。
tanx=sinx/cosx,secx=1/cosx。
∫secx/tanxdx
=∫1/cosx×cosx/sinxdx
=∫cscxdx
= ln|tan(x/2)| + C
= (1/2)ln|(1 - cosx)/(1 + cosx)| + C
= - ln|cscx + cotx| + C
= ln|cscx - cotx| + C
扩展资料:
同角三角函数的基本关系式
倒数关系:tanα ·cotα=1、sinα ·cscα=1、cosα ·secα=1;
商的关系: sinα/cosα=tanα=secα/cscα、cosα/sinα=cotα=cscα/secα;
和的关系:sin²α+cos²α=1、1+tan²α=sec²α、1+cot²α=csc²α;
平方关系:sin²α+cos²α=1。
常用积分公式:
1)∫0dx=c
2)∫x^udx=(x^(u+1))/(u+1)+c
3)∫1/xdx=ln|x|+c
4)∫a^xdx=(a^x)/lna+c
5)∫e^xdx=e^x+c
6)∫sinxdx=-cosx+c
7)∫cosxdx=sinx+c
8)∫1/(cosx)^2dx=tanx+c
9)∫1/(sinx)^2dx=-cotx+c
10)∫1/√(1-x^2) dx=arcsinx+c
11)∫1/(1+x^2)dx=arctanx+c
12)∫1/(a^2-x^2)dx=(1/2a)ln|(a+x)/(a-x)|+c
13)∫secxdx=ln|secx+tanx|+c