
已知x=二分之(根号五加一),求x五次方分之(x三次方+x+1)的值。
3个回答
展开全部
x=(√5+1)/2
1/x=(√5-1)/2
则,x-1/x=1
(x^3+x+1)/(x^5)=1/x^2+1/x^4+1/x^5
=(x-1/x)/x^2+(x-1/x)/x^4+1/x^5
=1/x-1/x^3+1/x^3-1/x^5+1/x^5
=1/x
=(√5-1)/2
1/x=(√5-1)/2
则,x-1/x=1
(x^3+x+1)/(x^5)=1/x^2+1/x^4+1/x^5
=(x-1/x)/x^2+(x-1/x)/x^4+1/x^5
=1/x-1/x^3+1/x^3-1/x^5+1/x^5
=1/x
=(√5-1)/2
展开全部
x=(√5+1)/2
x-1=(√5-1)/2
x(x-1)=1
1=x^2-x
(x^3+x+1)/x^5
=(x^3+x+x^2-x)/x^5
=(x^3+x^2)/x^5
=(x+1)/x^3
=(x+x^2-x)/x^3
=1/x
=(√5-1)/2
x-1=(√5-1)/2
x(x-1)=1
1=x^2-x
(x^3+x+1)/x^5
=(x^3+x+x^2-x)/x^5
=(x^3+x^2)/x^5
=(x+1)/x^3
=(x+x^2-x)/x^3
=1/x
=(√5-1)/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
x=(√5+1)/2
1/x=(√5-1)/2
则,x-1/x=1
(x^3+x+1)/(x^5)=1/x^2+1/x^4+1/x^5
=(x-1/x)/x^2+(x-1/x)/x^4+1/x^5
=1/x-1/x^3+1/x^3-1/x^5+1/x^5
=1/x
=(√5-1)/2
1/x=(√5-1)/2
则,x-1/x=1
(x^3+x+1)/(x^5)=1/x^2+1/x^4+1/x^5
=(x-1/x)/x^2+(x-1/x)/x^4+1/x^5
=1/x-1/x^3+1/x^3-1/x^5+1/x^5
=1/x
=(√5-1)/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询