什么矩阵的转置会等于它本身?
6个回答
展开全部
对称矩阵的转置=自身(A转)=A。
任意一个m行n列的矩阵A,把A的元素的行和列交换以后得到一个m行n列的新矩阵A',叫做矩阵A的转址矩阵。例如
A=(1 2 3)
(4 5 6)
,,
(1 4)
A'=(2 5)
,,
(3 6)
矩阵的秩的定义:
是其行向量或列向量的极大无关组中包含向量的个数。
能这么定义的根本原因是:矩阵的行秩和列秩相等(证明可利用n+1个n维向量必线性相关)
矩阵的秩的几何意义如下:在n维线性空间V中定义线性变换,可以证明:在一组给定的基下,任一个线性变换都可以与一个n阶矩阵一一对应;而且保持线性;换言之,所有线性变换组成的空间End<F>(V)与所有矩阵组成的空间M(n)<F>是同构的。
展开全部
对称矩阵的转置=自身: (A转)=A。需要区别: 正交矩阵的转置等于正交矩阵的逆: (Q转)=(Q逆) ≠ 自身。还要注意: 对称正交矩阵的转置=对称正交矩阵的逆=自身: 亦即(U转)=(U逆)=U。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
转置等于本身的矩阵,称为对称阵。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询