如图,在△ABC中,∠BAC=90°,AB=AC,点D为AC中点,AE垂直BD于点E,AE交BC于点F,求证,∠ADB=∠CDF。
3个回答
展开全部
证明:
过C作CM//AB交AF的延长线于M
因为∠BAC=90°
所以∠BAE+∠DAE=90°,
因为∠BAE+∠ABE=90°
所以∠ABE=∠DAE
因为CM//AB,∠BAC=90°
所以∠ACM=90°
又因为AB=AC
所以△BAD≌△ACM(ASA)
所以AD=CM,∠ADB=∠M
因为D是AC的中点
所以AD=CD
所以CD=CM
因为∠ACM=90,∠ACB=45
所以∠ACB=∠BCM=45
又因为CF=CF
所以△DCF≌△MCF(SAS)
所以∠CDF=∠M
所以∠ADB=∠CDF
过C作CM//AB交AF的延长线于M
因为∠BAC=90°
所以∠BAE+∠DAE=90°,
因为∠BAE+∠ABE=90°
所以∠ABE=∠DAE
因为CM//AB,∠BAC=90°
所以∠ACM=90°
又因为AB=AC
所以△BAD≌△ACM(ASA)
所以AD=CM,∠ADB=∠M
因为D是AC的中点
所以AD=CD
所以CD=CM
因为∠ACM=90,∠ACB=45
所以∠ACB=∠BCM=45
又因为CF=CF
所以△DCF≌△MCF(SAS)
所以∠CDF=∠M
所以∠ADB=∠CDF
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
赞3楼的答案,我回味了一下
,它的证明过程完全正确,请采纳。
祝你开心!!!(也可把我也采纳,谢谢!)
,它的证明过程完全正确,请采纳。
祝你开心!!!(也可把我也采纳,谢谢!)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询