点A,B分别是椭圆x^2/36+y^2/20=1长轴的左右端点,点F是椭圆的右焦点,点P在椭圆上且位于x轴上方BA垂直于PF
点A,B分别是椭圆x^2/36+y^2/20=1长轴的左右端点,点F是椭圆的右焦点,点P在椭圆上且位于x轴上方BA垂直于PF(1)求点p坐标(2)设M是椭圆长轴AB上的一...
点A,B分别是椭圆x^2/36+y^2/20=1长轴的左右端点,点F是椭圆的右焦点,点P在椭圆上且位于x轴上方BA垂直于PF
(1)求点p坐标
(2)设M是椭圆长轴AB上的一点M到直线BP的距离等于|MA|,求椭圆上的点到点M的距离d的最小值 展开
(1)求点p坐标
(2)设M是椭圆长轴AB上的一点M到直线BP的距离等于|MA|,求椭圆上的点到点M的距离d的最小值 展开
2个回答
展开全部
1,先求出A、B、F点坐标。
A(-6,0),B(6,0),F(4,0)
点P坐标,设为(x,y),y>0,x^2/36+y^2/20=1 (1)
PA、PF互相垂直,其斜率相乘为-1
即 y/(x+6) * y/(x-4)=-1 => y^2=-(x+6)(x-4) (2)
将(2)代入(1)中,x^2/36-(x+6)(x-4)/20=1
=> 2x^2+9x-18=0
=> x=3/2,x=-6 代入(2)中
x=3/2 时 ,y^2=-(6+1.5)/(1.5-4)=7.5/2.5=3 而y>0 所以 y=√3
x=-6 时 , y^2=0 => y=0不合题意,舍去
故所求点P的坐标为(3/2,√3)
2,由P(3/2,5√3/2)得L(AP):(y-0)/(5√3/2-0)=(x+6)/(3/2+6)则L(AP): x-√3y+6=0∵M到AP距离=lMBl,M(x,0) |x+6|/2=l6-xl(-6<=x<=6)x=2则M为(2,0) 设(x,y)到M距离d d^2=(x-2)^2+y^2=4/9(x-9/2)^2+15∴x=9/2时d(min)=√15
A(-6,0),B(6,0),F(4,0)
点P坐标,设为(x,y),y>0,x^2/36+y^2/20=1 (1)
PA、PF互相垂直,其斜率相乘为-1
即 y/(x+6) * y/(x-4)=-1 => y^2=-(x+6)(x-4) (2)
将(2)代入(1)中,x^2/36-(x+6)(x-4)/20=1
=> 2x^2+9x-18=0
=> x=3/2,x=-6 代入(2)中
x=3/2 时 ,y^2=-(6+1.5)/(1.5-4)=7.5/2.5=3 而y>0 所以 y=√3
x=-6 时 , y^2=0 => y=0不合题意,舍去
故所求点P的坐标为(3/2,√3)
2,由P(3/2,5√3/2)得L(AP):(y-0)/(5√3/2-0)=(x+6)/(3/2+6)则L(AP): x-√3y+6=0∵M到AP距离=lMBl,M(x,0) |x+6|/2=l6-xl(-6<=x<=6)x=2则M为(2,0) 设(x,y)到M距离d d^2=(x-2)^2+y^2=4/9(x-9/2)^2+15∴x=9/2时d(min)=√15
展开全部
100分 求一篇演讲稿,。要求:1.以金凌十三钗为题材 2.题目: 我为祖国骄傲 在线等,满意加分~!点A,B分别是椭圆x^2/36+y^2/20=1长轴的左右端点,点F是椭圆的右焦点,点P在椭圆上且位于x轴上方BA垂直于PF
(1)求点p坐标
(2)设M是椭圆长轴AB上的一点M到直线BP的距离等于|MA|,求椭圆上的使用百度Hi可以第一时间收到“提问有新回答”“回答被采纳”“网友求助”的通知。查看详情
您想在自己的网站上展示百度“知道”上的问答吗?来获取免费代码吧!
投诉或举报,请到百度知道投诉吧反馈。
功能意见建议,请到知道意见社吧反馈。
点到点M的距离d的最小
(1)求点p坐标
(2)设M是椭圆长轴AB上的一点M到直线BP的距离等于|MA|,求椭圆上的使用百度Hi可以第一时间收到“提问有新回答”“回答被采纳”“网友求助”的通知。查看详情
您想在自己的网站上展示百度“知道”上的问答吗?来获取免费代码吧!
投诉或举报,请到百度知道投诉吧反馈。
功能意见建议,请到知道意见社吧反馈。
点到点M的距离d的最小
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询