用洛必达法则求limx→0+时(1/x)^tanx

 我来答
茹翊神谕者

2021-02-15 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1536万
展开全部

变形后,然后用洛必达法则即可

答案如图所示,有任何疑惑,欢迎追问

网易云信
2023-12-06 广告
UIkit是一款轻量级、模块化、基于jQuery的UI框架,它提供了大量易于使用的UI组件,包括按钮、表单、表格、对话框、通知等等。UIkit的设计理念是尽可能地简洁和灵活,开发者可以根据自己的需求自由地选择需要的组件和样式,从而快速构建出... 点击进入详情页
本回答由网易云信提供
董悦畅柔翠
2020-02-02 · TA获得超过3.1万个赞
知道大有可为答主
回答量:1.1万
采纳率:33%
帮助的人:598万
展开全部
解题过程如下:
设y=(1/x)^tanx=
lny=tanx*ln(1/x)
lim0>
lny=lim
tanx*ln(1/x)=lim
ln(1/x)/ctanx=lim
(-1/x)/(-csc²x)=lim
sin²x/x=lim
sinx/x
*
sinx=1*0=0
lim0>lny=0
所以
lim(1/x)∧tanx=e^0=1
扩展资料
应用条件
在运用洛必达法则之前,首先要完成两项任务:一是分子分母的极限是否都等于零(或者无穷大);二是分子分母在限定的区域内是否分别可导。如果这两个条件都满足,接着求导并判断求导之后的极限是否存在:如果存在,直接得到答案;如果不存在,则说明此种未定式不可用洛必达法则来解决;如果不确定,即结果仍然为未定式,再在验证的基础上继续使用洛必达法则。
注意事项
求极限是高等数学中最重要的内容之一,也是高等数学的基础部分,因此熟练掌握求极限的方法对学好高等数学具有重要的意义。洛比达法则用于求分子分母同趋于零的分式极限[3]。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式