如图,在平面直角坐标系中点c(-3,0),点A,B分别在x轴,y轴的正半轴上,且满足√OB²-3 +|OA―1|=0.,是
如图,在平面直角坐标系中点c(-3,0),点A,B分别在x轴,y轴的正半轴上,且满足√OB²-3+|OA―1|=0.,是判断三角形abc的形状...
如图,在平面直角坐标系中点c(-3,0),点A,B分别在x轴,y轴的正半轴上,且满足√OB²-3 +|OA―1|=0.,是判断三角形abc的形状
展开
展开全部
OA=1, OB=√3
所以A(1,0),B(0,√3)
AB=2
BC=2√3
AC=4
因为:AB^2+BC^2=AC^2
所以ABC为直角三角形
CP=t
当0<=t<=2√3
则:BP=2√3-t
所以:S=(1/2)*BP*AB=2√3-t
当2√3<t
则:BP=t-2√3
所以:S=(1/2)*BP*AB=t-2√3
第三问:
已知角ABO=30°
假设BAP=30°
则:BP=AB*tan30°=2√3/3,求得P坐标(-1,2√3/3)或(1,4√3/3)
假设BPA=30°
则:BP=AB*cot30°=2√3,求得P坐标(-3,0)或(3,2√3)
所以是直角三角形
所以A(1,0),B(0,√3)
AB=2
BC=2√3
AC=4
因为:AB^2+BC^2=AC^2
所以ABC为直角三角形
CP=t
当0<=t<=2√3
则:BP=2√3-t
所以:S=(1/2)*BP*AB=2√3-t
当2√3<t
则:BP=t-2√3
所以:S=(1/2)*BP*AB=t-2√3
第三问:
已知角ABO=30°
假设BAP=30°
则:BP=AB*tan30°=2√3/3,求得P坐标(-1,2√3/3)或(1,4√3/3)
假设BPA=30°
则:BP=AB*cot30°=2√3,求得P坐标(-3,0)或(3,2√3)
所以是直角三角形
展开全部
(1)因为√(OB^-3)+|OA-1|=0,所以有OB=√3,OA=1,因为A,B分别在x轴y轴正半轴上,所以有A(1,0),B(0,√3)
(2)可以求出BC=2√3,AB=2,而AC=1+3=4,可以得出ΔABC是直角三角形,∠ABC=90度
点P从C点出发,以每秒1个单位的速度沿射线CB运动,通过此条件可以得出:CP=t,且t∈[0,2√3]
S=SΔABP=PB*AB/2=(BC-PC)*2/2=2√3-t,其中t∈[0,2√3]
(3)若是存在P点使ΔABP相似于ΔAOB,那么由∠PBA=90度可以得出,PB,AB是ΔABP的两条直角边,且它们的比例应满足ΔAOB中两条直角边的比,而由于OA,OB是ΔAOB的两条直角边,它们互不相等,OB/0A=√3/1=√3,所以ΔPAB中的两条直角边PB,AB之比也应等于√3,只是无法确定它们谁长谁短而已,需分类讨论
若PB比AB长,那么有PB/AB=√3,则PB=√3*2=2√3,t=PC=BC-PB=2√3-2√3=0,可以看出,此种情况下P点与C点重合,P的坐标是(-3,0)
若AB比PB长,则有AB/PB=√3,PB=√3*2/3=2√3/3,t=2√3-2√3/3=4√3/3,满足t的取值范围,所以此点也存在
过B(0,√3)与C(-3,0)两点的直线方程可求出为y=√3x/3+√3,而P位于此上,且由几何关系可以得出yp=t/2=2√3/3,代入直线方程可得xp=-1
所以P坐标为(-1,2√3/3)
(2)可以求出BC=2√3,AB=2,而AC=1+3=4,可以得出ΔABC是直角三角形,∠ABC=90度
点P从C点出发,以每秒1个单位的速度沿射线CB运动,通过此条件可以得出:CP=t,且t∈[0,2√3]
S=SΔABP=PB*AB/2=(BC-PC)*2/2=2√3-t,其中t∈[0,2√3]
(3)若是存在P点使ΔABP相似于ΔAOB,那么由∠PBA=90度可以得出,PB,AB是ΔABP的两条直角边,且它们的比例应满足ΔAOB中两条直角边的比,而由于OA,OB是ΔAOB的两条直角边,它们互不相等,OB/0A=√3/1=√3,所以ΔPAB中的两条直角边PB,AB之比也应等于√3,只是无法确定它们谁长谁短而已,需分类讨论
若PB比AB长,那么有PB/AB=√3,则PB=√3*2=2√3,t=PC=BC-PB=2√3-2√3=0,可以看出,此种情况下P点与C点重合,P的坐标是(-3,0)
若AB比PB长,则有AB/PB=√3,PB=√3*2/3=2√3/3,t=2√3-2√3/3=4√3/3,满足t的取值范围,所以此点也存在
过B(0,√3)与C(-3,0)两点的直线方程可求出为y=√3x/3+√3,而P位于此上,且由几何关系可以得出yp=t/2=2√3/3,代入直线方程可得xp=-1
所以P坐标为(-1,2√3/3)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询