λ取何值时,线性方程组有唯一解,无穷解,无解?有无穷多解时求出通解。

 我来答
捷增岳蒉媪
2020-01-07 · TA获得超过3.6万个赞
知道大有可为答主
回答量:1.4万
采纳率:29%
帮助的人:870万
展开全部
写出此方程组的增广矩阵,用初等行变换来解
-2
1
1
-2
1
-2
1
λ
1
1
-2
λ^2
第1行加上第2行×2,第3行减去第2行

0
-3
3
-2+2λ
1
-2
1
λ
0
3
-3
λ^2-λ
第3行加上第1行,第1行和第2行交换

1
-2
1
λ
0
-3
3
-2+2λ
0
0
0
λ^2+λ-2
若方程组有无穷多解,
则r(a)=r(a,b)<3,
所以λ^2+λ-2=0解得λ=
-2或
1
当λ=
-2
增广矩阵化为
1
-2
1
-2
0
-3
3
-6
0
0
0
0
第2行除以-3

1
-2
1
-2
0
1
-1
2
0
0
0
0
第1行加上第2行×2

1
0
-1
2
0
1
-1
2
0
0
0
0
得到方程组的解为:c(1,1,1)^t
+(2,2,0)^t,c为常数
当λ=1时,
增广矩阵化为
1
-2
1
1
0
-3
3
0
0
0
0
0
第2行除以-3

1
-2
1
1
0
1
-1
0
0
0
0
0
第1行加上第2行×2

1
0
-1
1
0
1
-1
0
0
0
0
0
得到方程组的解为:c(1,1,1)^t
+(1,0,0)^t,c为常数
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
富港检测技术(东莞)有限公司_
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
贲荣花叶戌
2020-01-24 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.4万
采纳率:29%
帮助的人:684万
展开全部
j化简得
λ

0
——(λ-1)
0
λ-1
0
-------(-λ)
0
0
λ(λ-1)----(2λ-1)
则λ=0时,R(A)=1不等于R(A_)=2
无解
λ=1时,R(A)=1不等于R(A_)=2
无解
λ不等于0且不等于1时,R(A)=R(A_)=3
有唯一解
(顺便问一句,你怎么把λ输入进去的?)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式