用放缩法证明1/2-1/(n+1)<1/2^2+1/3^2+....+1/n^2<(n-1)/n
1个回答
展开全部
估计你题目打错了。我自己改一下。把3^3改成3^2
1/(2^2)+1/(3^2)+````+1/(n^2)
>
1/(2*3)+1/(3*4)+....+1/[n(n+1)]
=1/2-1/3+1/3-1/4+......+1/n-1/(n+1)
=1/2-1/(n+1)
右半部分
1/(2^2)+1/(3^2)+````+1/(n^2)
<
1/(1*2)+1/(2*3)+....+1/[(n-1)n]
=1-1/2+1/2-1/3.......+1/(n-1)-1/n
=(n-1)/n
1/(2^2)+1/(3^2)+````+1/(n^2)
>
1/(2*3)+1/(3*4)+....+1/[n(n+1)]
=1/2-1/3+1/3-1/4+......+1/n-1/(n+1)
=1/2-1/(n+1)
右半部分
1/(2^2)+1/(3^2)+````+1/(n^2)
<
1/(1*2)+1/(2*3)+....+1/[(n-1)n]
=1-1/2+1/2-1/3.......+1/(n-1)-1/n
=(n-1)/n
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询