已知数列{an},{bn}满足:a1=9/2,2a(n+1)-an=6×2^n,bn=an-2^(n+1)...
已知数列{an},{bn}满足:a1=9/2,2a(n+1)-an=6×2^n,bn=an-2^(n+1)求证:数列{bn}为等比数列,并求数列{an}{bn}的通项公式...
已知数列{an},{bn}满足:a1=9/2,2a(n+1)-an=6×2^n,bn=an-2^(n+1)
求证:数列{bn}为等比数列,并求数列{an}{bn}的通项公式 展开
求证:数列{bn}为等比数列,并求数列{an}{bn}的通项公式 展开
2个回答
展开全部
由于2a(n+1)-an=6×2^n, 所以2a(n+1)=an+6×2^n
而bn=an-2^(n+1),
所以b(n+1)/bn=(a(n+1)-2^(n+2))/(an-2^(n+1))
=[1/2*an+3*2^n-2^(n+2)]/(an-2^(n+1))
=[1/2*(an+6*2^n-2^(n+2))]/(an-2^(n+1))
=[1/2*(an+(6-4)*2^n)]/(an-2^(n+1))
=[1/2*(an-2^(n+1))]/(an-2^(n+1))=1/2
所以数列{bn}为等比数列,首项b1=a1-2^2=1/2,公比是1/2的等比数列.
因此bn=(1/2)^n
从而an=bn+2^(n+1)=1/2^n+2^(n+1)
而bn=an-2^(n+1),
所以b(n+1)/bn=(a(n+1)-2^(n+2))/(an-2^(n+1))
=[1/2*an+3*2^n-2^(n+2)]/(an-2^(n+1))
=[1/2*(an+6*2^n-2^(n+2))]/(an-2^(n+1))
=[1/2*(an+(6-4)*2^n)]/(an-2^(n+1))
=[1/2*(an-2^(n+1))]/(an-2^(n+1))=1/2
所以数列{bn}为等比数列,首项b1=a1-2^2=1/2,公比是1/2的等比数列.
因此bn=(1/2)^n
从而an=bn+2^(n+1)=1/2^n+2^(n+1)
展开全部
因为2a(n+1)-an=6×2^n, 所以2a(n+1)=an+6×2^n
又因为bn=an-2^(n+1),
b(n+1)/bn=(a(n+1)-2^(n+2))/(an-2^(n+1))
=[1/2*an+3*2^n-2^(n+2)]/(an-2^(n+1))
=[1/2*(an+6*2^n-2^(n+2))]/(an-2^(n+1))
=[1/2*(an+(6-4)*2^n)]/(an-2^(n+1))
=[1/2*(an-2^(n+1))]/(an-2^(n+1))
所以数列{bn}为等比数列因此bn=(1/2)^n
从而an=bn+2^(n+1)=1/2^n+2^(n+1)
又因为bn=an-2^(n+1),
b(n+1)/bn=(a(n+1)-2^(n+2))/(an-2^(n+1))
=[1/2*an+3*2^n-2^(n+2)]/(an-2^(n+1))
=[1/2*(an+6*2^n-2^(n+2))]/(an-2^(n+1))
=[1/2*(an+(6-4)*2^n)]/(an-2^(n+1))
=[1/2*(an-2^(n+1))]/(an-2^(n+1))
所以数列{bn}为等比数列因此bn=(1/2)^n
从而an=bn+2^(n+1)=1/2^n+2^(n+1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询