求函数的一阶偏导数,(1)z=arctan(y/x) (2)z=x/ √(x^2+y^2)

 我来答
万光誉丁名
2020-04-11 · TA获得超过3.4万个赞
知道大有可为答主
回答量:1.2万
采纳率:26%
帮助的人:915万
展开全部
1、∂z/∂x=[1/(1+(y/x)²)](-y/x²)=-y/(x²+y²)
∂z/∂y=[1/(1+(y/x)²)](1/x)=x/(x²+y²)
2、先求出√(x²+y²)的导数偏导数,这个结果比较常用,请记住
∂[√(x²+y²)]/∂x=x/√(x²+y²)
∂[√(x²+y²)]/∂y=y/√(x²+y²)
∂z/∂x=[√(x²+y²)-x²/√(x²+y²)]/(x²+y²)
=y²/(x²+y²)^(3/2)
∂z/∂y=[-x/(x²+y²)][y/√(x²+y²)]
=-xy/(x²+y²)^(3/2)
【数学之美】团队为您解答,若有不懂请追问,如果解决问题请点下面的“选为满意答案”。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式