数学题,谁能帮我解答下,
求由函数y=sinx、y=cosx、x轴上的线段[0,90°]所围图形绕x轴旋转所成图形的体积?越详细越好,谢谢...
求由函数y=sinx、y=cosx、x轴上的线段[0,90°]所围图形绕x轴旋转所成图形的体积?越详细越好,谢谢
展开
1个回答
展开全部
求由函数y=sinx,y=cosx,x轴上的线段【0,π/2】所围图形绕X轴旋转所成的旋转体体积?
解:
V=[0,π/4)π∫sin²xdx+[π/4,π/2]π∫cos²xdx
=[0,π/4](π/2)∫(1-cos2x)dx+[π/4,π/2](π/2)∫(1+cosx)dx
=[0,π/4][(π/2)∫dx-(π/4)∫(cos2xd(2x)]+[π/4,π/2][(π/2)∫dx+(π/4)∫cos2xd(2x)]
=[(π/2)x-(π/4)sin2x]︱[0,π/4]+[(π/2)x+(π/4)sin2x]︱[π/4,π/2]
=π²/8-(π/4)+[π²/4-π²/8-π/4]=π²/4-π/2=(π/4)(π-2)
解:
V=[0,π/4)π∫sin²xdx+[π/4,π/2]π∫cos²xdx
=[0,π/4](π/2)∫(1-cos2x)dx+[π/4,π/2](π/2)∫(1+cosx)dx
=[0,π/4][(π/2)∫dx-(π/4)∫(cos2xd(2x)]+[π/4,π/2][(π/2)∫dx+(π/4)∫cos2xd(2x)]
=[(π/2)x-(π/4)sin2x]︱[0,π/4]+[(π/2)x+(π/4)sin2x]︱[π/4,π/2]
=π²/8-(π/4)+[π²/4-π²/8-π/4]=π²/4-π/2=(π/4)(π-2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询