arctan1/x的极限x趋近于0ma?

 我来答
娱乐小百科123
高能答主

2021-11-12 · 生命有限,快乐无限。
娱乐小百科123
采纳数:435 获赞数:10739

向TA提问 私信TA
展开全部

过程如下:

假设f(x)=arctan(1/x)

则f(0+0)=lim(x-0+) arctan(1/x) =pi/2

f(0-0)=-pi/2

因为f(0+0)不等于f(0-0)

所以,极限不存在。

先要用单调有界定理证明收敛,然后再求极限值。应用夹挤定理的关键是找到极限值相同的函数 ,并且要满足极限是趋于同一方向 ,从而证明或求得函数 的极限值。

必要条件:

若函数在某点可微分,则函数在该点必连续。

若二元函数在某点可微分,则该函数在该点对x和y的偏导数必存在。

若函数对x和y的偏导数在这点的某一邻域内都存在,且均在这点连续,则该函数在这点可微。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式