在△ABC中,AB=2根号5,AC=4,BC=2,以AB为边向△ABC外作△ABD,使△ABD为等腰直角三角形,求线段CD的长,

hljsyssyn
2014-01-14
知道答主
回答量:14
采纳率:0%
帮助的人:6.2万
展开全部

解:

∵AC=4,BC=2,AB=2倍根号5,
∴AC2+BC2=AB2,
∴△ACB为直角三角形,∠ACB=90°.
分三种情况:
如图(1),过点D作DE⊥CB,垂足为点E.
∵DE⊥CB(已知)
∴∠BED=∠ACB=90°(垂直的定义),
∴∠CAB+∠CBA=90°(直角三角形两锐角互余),
∵△ABD为等腰直角三角形(已知),
∴AB=BD,∠ABD=90°(等腰直角三角形的定义),
∴∠CBA+∠DBE=90°(平角的定义),
∴∠CAB=∠EBD(同角的余角相等),
在△ACB与△BED中,
∵∠ACB=∠BED,∠CAB=∠EBD,AB=BD(已证),
∴△ACB≌△BED(AAS),
∴BE=AC=4,DE=CB=2(全等三角形对应边相等),
∴CE=6(等量代换)

根据勾股定理得:CD=2√10;

如图(2),过点D作DE⊥CA,垂足为点E.
∵BC⊥CA(已知)
∴∠AED=∠ACB=90°(垂直的定义)
∴∠EAD+∠EDA=90°(直角三角形两锐角互余)
∵△ABD为等腰直角三角形(已知)
∴AB=AD,∠BAD=90°(等腰直角三角形的定义)
∴∠CAB+∠DAE=90°(平角的定义)
∴∠BAC=∠ADE(同角的余角相等)
在△ACB与△DEA中,
∵∠ACB=∠DEA(已证)∠CAB=∠EDA(已证) AB=DA(已证)
∴△ACB≌△DEA(AAS)
∴DE=AC=4,AE=BC=2(全等三角形对应边相等)
∴CE=6(等量代换)
根据勾股定理得:CD=2√13;

如图(3),过点D作DE⊥CB,垂足为点E,过点A作AF⊥DE,垂足为点F.
∵∠C=90°,
∴∠CAB+∠CBA=90°,
∵∠DAB+∠DBA=90°,
∴∠EBD+∠DAF=90°,
∵∠EBD+∠BDE=90°,∠DAF+∠ADF=90°,
∴∠DBE=∠ADF,
∵∠BED=∠AFD=90°,DB=AD,
∴△AFD≌△DEB,易求CD=3√2.

向左转|向右转

提问者评价谢谢!

小胖子爱吃鱼
2012-03-23 · 无聊,我是认真的。搞笑,我也是认真的。
小胖子爱吃鱼
采纳数:305 获赞数:1633

向TA提问 私信TA
展开全部
AB的平方=AC的平方+BC的平方
三角形ABC为直角三角形
AB的平方=AD的平方+BD的平方,AD=BD=根号10
以AB的中点0为圆心,以根号5为半径画圆
连接CO,DO,DC
角COD=角BOD+角COB
根据余弦定理求得角COS 角COB=3/5. 角COB=53度
所以;角COD=90+53=143度
COS 角COD=[5+5-CD平方]/(2*5)=COS143度=-4/5
求解得;CD=3根号2
追问
有三种答案、还差两种啊
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
可可乐86
2012-08-05
知道答主
回答量:31
采纳率:0%
帮助的人:18万
展开全部
解:∵AC=4,BC=2,AB=2 5 ,
∴AC2+BC2=AB2,
∴△ACB为直角三角形,∠ACB=90°.
分三种情况:
如图(1),过点D作DE⊥CB,垂足为点E.易证△ACB≌△BED,
易求CD=2 10 ;
如图(2),过点D作DE⊥CA,垂足为点E.易证△ACB≌△DEA,
易求CD=2 13 ;
如图(3),过点D作DE⊥CB,垂足为点E,过点A作AF⊥DE,垂足为点F.
∵∠C=90°,
∴∠CAB+∠CBA=90°,
∵∠DAB+∠DBA=90°,
∴∠EBD+∠DAF=90°,
∵∠EBD+∠BDE=90°,∠DAF+∠ADF=90°,
∴∠DBE=∠ADF,
∵∠BED=∠AFD=90°,DB=AD,
∴△AFD≌△DEB,易求CD=3 2 .
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
帐号已注销
2012-04-01 · TA获得超过884个赞
知道小有建树答主
回答量:267
采纳率:0%
帮助的人:234万
展开全部

解:

追问
不是很清楚  解题过程
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
远上寒山有人家
2013-10-10 · 知道合伙人教育行家
远上寒山有人家
知道合伙人教育行家
采纳数:6834 获赞数:40667
中南工业大学电气自动化专业,工程硕士,从事电力运行工作近30年

向TA提问 私信TA
展开全部
看我的答案,问题和你是一样的,不过有六种情况,而非三种。http://zhidao.baidu.com/question/582574379506100085.html?sort=6&old=1#here
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(5)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式