lim(n→∞)∑(k=1,n)1/√n^2+k
推荐于2021-01-27
展开全部
(1/√n^2+1)+(1/√n^2+2)+...+(1/√n^2+n)
<(1/√n^2+1)+(1/√n^2+1)+...+(1/√n^2+1)
=(n/√n^2+1)→1(n→∞)
(1/√n^2+1)+(1/√n^2+2)+...+(1/√n^2+n)
>(1/√n^2+n)+(1/√n^2+n)+...+(1/√n^2+n)
=(n/√n^2+n)→1(n→∞)
夹逼准则知lim(n→∞)∑(k=1,n)1/√n^2+k=1
<(1/√n^2+1)+(1/√n^2+1)+...+(1/√n^2+1)
=(n/√n^2+1)→1(n→∞)
(1/√n^2+1)+(1/√n^2+2)+...+(1/√n^2+n)
>(1/√n^2+n)+(1/√n^2+n)+...+(1/√n^2+n)
=(n/√n^2+n)→1(n→∞)
夹逼准则知lim(n→∞)∑(k=1,n)1/√n^2+k=1
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询