在三角形中,已知1+tanA/tanB=2sinC/sinB 1.求角A的大小
1个回答
展开全部
∵1+tanA/tanB=sinC/sinB
∴tanB+tanA=2tanB*sinC/sinB
∴tanB+tanA
=2tanB*sinC/sinB
=2sinC/cosB
即tanB+tanA=2sinC/cosB
sinB*cosA+sinA*cosB=2sinC*cosA
sin(A+B)=2sinC*cosA,
∵sinC=sin(A+B), ∴sinC=2sinC*cosA,
∵sinC≠0
∴cosA=1/2>0(∴A是锐角)
∴A=π/3
∴tanB+tanA=2tanB*sinC/sinB
∴tanB+tanA
=2tanB*sinC/sinB
=2sinC/cosB
即tanB+tanA=2sinC/cosB
sinB*cosA+sinA*cosB=2sinC*cosA
sin(A+B)=2sinC*cosA,
∵sinC=sin(A+B), ∴sinC=2sinC*cosA,
∵sinC≠0
∴cosA=1/2>0(∴A是锐角)
∴A=π/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询