几条曲线围成的面积指哪个面积
1个回答
展开全部
个人理解:对函数求导就是微分,或者说要求某可导函数的某处斜率时要用微分
而求两函数围成的面积要用积分,积分符号∫
微分与积分是互逆计算,已知原函数,求导函数叫微分;已知导函数,求原函数叫积分
比如 已知函数y=x²,对其微分就是y’=2x,求其积分就是y=(1/3)x³
【曲线 y=x^n对其求导(即求其微分)
y’=n•x^(n-1)
若有点Q(a,a^n)
把x=a代入y’=n•x^(n-1)
得到 y’=n•a^(n-1)即为曲线在点Q处切线斜率
那么很显然,对其求积分,则为
y=[1/(n+1)]•x^(n+1)】
两曲线f(x),g(x)之间在a≤x≤b区间上所围成的面积
S=∫[a,b]{|f(x)-g(x)|}dx
([a,b]表示区间,{}内表示要积分的函数,dx应该表示定积分
注意:定义式中|f(x)-g(x)|带绝对值的,现实计算可根据几何意义去掉绝对值
回到你举的例
x轴实际上是直线x=0
所以f(x)=x²,g(x)=0,
S=∫[a,b]{x²-0|}dx【很显然,在[a,b]间f(x)在g(x)的上方,所以在区间[a,b]中f(x)-g(x)>0】
=∫[a,b]{x²}dx
=(1/3)x³ [a,b]
=(1/3)b³-(1/3)a³
【牛顿-莱布尼兹公式用文字表述,就是说一个定积分式的值,就是上限在原函数的值与下限在原函数的值的差。(我的个人理解是:S=∫[a,b]{x²-0|}dx是一个定积分式,求他的方法是 对其积分求出原函数,再把上限和下限代入作差)
而定积分就是把直角坐标系上的函数的图象用平行于y轴的直线和x轴把其分割成无数个矩形,然后把某个区间[a,b]上的矩形的面积累加起来,所得到的就是这个函数的图象在区间[a,b]的面积】
【由于x轴实际上是直线x=0,所以若直接对f(x)积分,求的就是在区间[a,b]中f(x)与x轴围成的面积】
而求两函数围成的面积要用积分,积分符号∫
微分与积分是互逆计算,已知原函数,求导函数叫微分;已知导函数,求原函数叫积分
比如 已知函数y=x²,对其微分就是y’=2x,求其积分就是y=(1/3)x³
【曲线 y=x^n对其求导(即求其微分)
y’=n•x^(n-1)
若有点Q(a,a^n)
把x=a代入y’=n•x^(n-1)
得到 y’=n•a^(n-1)即为曲线在点Q处切线斜率
那么很显然,对其求积分,则为
y=[1/(n+1)]•x^(n+1)】
两曲线f(x),g(x)之间在a≤x≤b区间上所围成的面积
S=∫[a,b]{|f(x)-g(x)|}dx
([a,b]表示区间,{}内表示要积分的函数,dx应该表示定积分
注意:定义式中|f(x)-g(x)|带绝对值的,现实计算可根据几何意义去掉绝对值
回到你举的例
x轴实际上是直线x=0
所以f(x)=x²,g(x)=0,
S=∫[a,b]{x²-0|}dx【很显然,在[a,b]间f(x)在g(x)的上方,所以在区间[a,b]中f(x)-g(x)>0】
=∫[a,b]{x²}dx
=(1/3)x³ [a,b]
=(1/3)b³-(1/3)a³
【牛顿-莱布尼兹公式用文字表述,就是说一个定积分式的值,就是上限在原函数的值与下限在原函数的值的差。(我的个人理解是:S=∫[a,b]{x²-0|}dx是一个定积分式,求他的方法是 对其积分求出原函数,再把上限和下限代入作差)
而定积分就是把直角坐标系上的函数的图象用平行于y轴的直线和x轴把其分割成无数个矩形,然后把某个区间[a,b]上的矩形的面积累加起来,所得到的就是这个函数的图象在区间[a,b]的面积】
【由于x轴实际上是直线x=0,所以若直接对f(x)积分,求的就是在区间[a,b]中f(x)与x轴围成的面积】
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询