高数!函数连续的问题…… 证明:实系数奇数次代数方程至少有一个实根.

 我来答
户如乐9318
2022-06-03 · TA获得超过6636个赞
知道小有建树答主
回答量:2559
采纳率:100%
帮助的人:137万
展开全部
设f(x)是一个实系数奇数次多项式,则
x→+∞时,f(x)→+∞,所以存在X1>0,使得f(x1)>0
x→-∞时,f(x)→-∞,所以存在X2<0,使得f(x2)<0
f(x)在[X2.X1]上连续,由零点定理,至少存在一点ξ∈(X2,X1),使得f(ξ)=0,即方程f(x)=0至少有一个实数根.
----
用代数的方法证明:在实数域内分解多项式f(x)时,因为代数方程的复数根是成对出现的,且多项式是奇数次的,所以f(x)至少可以分解出一个一次因式,所以方程至少有一个实数根
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式