线面平行的判定定理
1个回答
展开全部
一条直线与一个平面无公共点(不相交),称为直线与平面平行。线面平行的判定定理为:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;平面外一条直线与此平面的垂线垂直,则这条直线与此平面平行。
定理1:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
已知:a∥b,α不包含a,α包含b,求证:a∥α
向量法证明:设a的方向向量为a,b的方向向量为b,面α的法向量为p。∵α包含b
∴b⊥p,即p·b=0∵a∥b,由共线向量基本定理可知存在一实数k使得a=kb
那么p·a=p·kb=kp·b=0 即a⊥p ∴a∥α
定理2:平面外一条直线与此平面的垂线垂直,则这条直线与此平面平行。
已知:a⊥b,b⊥α,且a不在α上。求证:a∥α
证明:设a与b的垂足为A,b与α的垂足为B。
假设a与α不平行,那么它们相交,设a∩α=C,连接BC由于不在直线上的三个点确定一个平面,因此ABC首尾相连得到△ABC
∵B∈α,C∈α,b⊥α ∴b⊥BC,即∠ABC=90°
∵a⊥b,即∠BAC=90° ∴在△ABC中,有两个内角为90°,这是不可能的事情。
∴假设不成立,a∥α。
定理1:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
已知:a∥b,α不包含a,α包含b,求证:a∥α
向量法证明:设a的方向向量为a,b的方向向量为b,面α的法向量为p。∵α包含b
∴b⊥p,即p·b=0∵a∥b,由共线向量基本定理可知存在一实数k使得a=kb
那么p·a=p·kb=kp·b=0 即a⊥p ∴a∥α
定理2:平面外一条直线与此平面的垂线垂直,则这条直线与此平面平行。
已知:a⊥b,b⊥α,且a不在α上。求证:a∥α
证明:设a与b的垂足为A,b与α的垂足为B。
假设a与α不平行,那么它们相交,设a∩α=C,连接BC由于不在直线上的三个点确定一个平面,因此ABC首尾相连得到△ABC
∵B∈α,C∈α,b⊥α ∴b⊥BC,即∠ABC=90°
∵a⊥b,即∠BAC=90° ∴在△ABC中,有两个内角为90°,这是不可能的事情。
∴假设不成立,a∥α。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询