e为什么是无理数

 我来答
完满且闲雅灬抹香鲸P
2022-07-16 · TA获得超过1.7万个赞
知道小有建树答主
回答量:380
采纳率:0%
帮助的人:70.7万
展开全部
自然常数用字母 e 来表示,以 e 为底的对数叫自然对数,用 lnx 表示, l 表示 logarithm (对数), n 表示 nature (自然)。在分析学中,比较常用的计算 e 的方法主要有两种,其一是利用极限

另一种方法是利用级数

e和π都是无理数,证明e是无理数比证明π是无理数要容易。

1737年欧拉利用无限连分数初步证明了e和e2是无理数。

下面介绍中国数学家夏道行证明e是无理数的思路。

假设e是有理数,设为q/p,(q,p  为互素自然数) ,任取n>p ,则由

两边同乘以 n!可得

所以, (*)式左端为正整数,故右端也应为正整数,但右端前n+1  项之和为正整数,而余项之和 Rn+1 却满足

即 Rn+1不是整数,从而  (*) 式右端不是整数,产生矛盾,所以e是无理数。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式