设y=f(x)与x=g(x)互为反函数,f'(x)=x^4+x^2+1那么g''(x)为多少?
1个回答
展开全部
反函数具有自反性,所仔嫌以x=g(y)
两边求导:1=(dg(y)/dx)=(dg(y)/dy)*(dy/dx)
化肆数简:1/(x^4+x^2+1)=g'(y)
再导:d(1/(x^4+x^2+1))/dx=d(g'(y))/dx=d(g'(y))/裂戚首dy*dy/dx
-(4x^3+2x)/(x^4+x^2+1)^2=g''(y)*(x^4+x^2+1)
化简g''(y)=-(4x^3+2x)/(x^4+x^2+1)^3
又因x=g(x)
所以g''(x)=-(4x^3+2x)/(x^4+x^2+1)^3
两边求导:1=(dg(y)/dx)=(dg(y)/dy)*(dy/dx)
化肆数简:1/(x^4+x^2+1)=g'(y)
再导:d(1/(x^4+x^2+1))/dx=d(g'(y))/dx=d(g'(y))/裂戚首dy*dy/dx
-(4x^3+2x)/(x^4+x^2+1)^2=g''(y)*(x^4+x^2+1)
化简g''(y)=-(4x^3+2x)/(x^4+x^2+1)^3
又因x=g(x)
所以g''(x)=-(4x^3+2x)/(x^4+x^2+1)^3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询