已知n阶方阵A满足A^2-2A-3E=0 证明A可逆 并求A^-1
1个回答
展开全部
A^2-2A-3E=0
A^2-2A=3E
A(A-2E)=3E
A(1/3*A-2/3*E)=E
所以A可逆,A的逆矩阵为1/3*A-2/3*E
A^2-2A=3E
A(A-2E)=3E
A(1/3*A-2/3*E)=E
所以A可逆,A的逆矩阵为1/3*A-2/3*E
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
北京埃德思远电气技术咨询有限公司
2021-11-22 广告
2021-11-22 广告
假设条件在短路的实际计算中, 为了能在准确范围内迅速地计算短路电流, 通常采取以下简化假设。(1)不考虑发电机的摇摆现象。(2)不考虑磁路饱和,认为短路回路各元件的电抗为常数。(3)不考虑线路对地电容, 变压器的磁支路和高压电网中的电阻, ...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询