已知:在平行四边形ABCD中,AE垂直BD于点E,CF垂直BD于点F,G和H分别为AD,BC的中点。 求证:EF和GH互相平分

sh5215125
高粉答主

2012-03-25 · 说的都是干货,快来关注
知道大有可为答主
回答量:1.4万
采纳率:96%
帮助的人:5844万
展开全部
【悬赏30分,给你两种方法,供参考】
【证法1】:
连接EG,HF
∵AE⊥BC,G为AD的中点
∴EG为Rt⊿AED的斜边中线
∴EG=½AD=DG
∴∠GED=∠GDB
同理:
HF=½BC=BH
∴∠HFB=∠HBD
∵四边形ABCD是平行四边形
∴①AD=BC
∴EG=HF
②AD//BC
∴∠GDB=∠HBD
∴∠GED=∠HFB
∴EG//HF
∴四边形EGFH为平行四边形
∴EF和GH互相平分
【证法2】:
设BD于GH交于O
∵四边形ABCD是平行四边形
∴AD=BC,AD//BC
∴∠GDO=∠BHO,∠GDO=∠HBO
∵G,H是AD,BC的中点
∴DG=BH
∴⊿DGO≌⊿BHO(ASA)
∴GO=HO,DO=BO
∵AE⊥BD,CF⊥BD
∴∠AED=∠CFB=90º
又∵∠ADE=∠CBF,AD=BC
∴⊿ADE≌⊿CBF(AAS)
∴DE=BF
∴DE-DO=BF-BO
即EO=FO
∴EF和GH互相平分
看不清lee
2012-03-25 · 超过12用户采纳过TA的回答
知道答主
回答量:50
采纳率:0%
帮助的人:34万
展开全部
设交点为O,因为 ODH全等于OHB(角边角)所以OH=OG, OB=OD
因为 ABE全等于CDF(边角边) 所以 BE=DF 所以 OE=OF 所以平分
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式