可相似对角化的充分必要条件是什么?
1个回答
展开全部
n阶方阵可进行对角化的充分必要条件是:n阶方阵存在n个线性无关的特征向量。
推论:如果这个n阶方阵有n个不同的特征值,那么矩阵必然存在相似矩阵。
如果阶n方阵存在重复的特征值,每个特征值的线性无关的特征向量的个数恰好等于该特征值的重复次数。
可对角化矩阵和映射在线性代数中有重要价值,因为对角矩阵特别容易处理:它们的特征值和特征向量是已知的,并通过简单的提升对角元素到同样的幂来把一个矩阵提升为它的幂。
任意两个3阶矩阵A,B相似的方法:
1、先求特征多项式,f(λ)=|λE-A|,g(λ)=|λE-B|。
2、若f(λ)≠g(λ)则矩阵A,B不相似。
3、若f(λ)=g(λ),且有3个不同根,则矩阵A,B相似。
4、若f(λ)=g(λ),且有2个不同根,即,f(λ)=g(λ)=(λ-a)^2(λ-b),(aE-A)(bE-A)=(aE-B)(bE-B)=0, 则矩阵A,B相似。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询