若f''(x)存在,求函数y=f(x+e^-x)的二阶导数. 我来答 1个回答 #热议# 为什么有人显老,有人显年轻? 机器1718 2022-08-07 · TA获得超过6841个赞 知道小有建树答主 回答量:2805 采纳率:99% 帮助的人:161万 我也去答题访问个人页 关注 展开全部 y=f(x+e^(-x)) y' = (1-e^(-x))f'(x+e^(-x)) y'' = e^(-x)f'(x+e^(-x)) +(1-e^(-x))^2.f''(x+e^(-x)) 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 其他类似问题 2021-10-16 已知f``(x)存在,求y=f(x^2)的二阶导数 1 2021-06-24 设函数y=f(x+y) ,其中f具有二阶导数,且f'不等于1,求二阶导数 3 2023-03-16 已知函数f(x)具有任意阶导数,且f'(x)=[f(x)] 2 2020-02-26 请问:设函数y=f(x)具有二阶导数,且f′(x)>0,f″(x)<0? 4 2022-06-03 设y=e^f(x) ,其中f(x) 为二阶可导函数,求y'' 2022-07-27 设f''(x)存在,求下列函数的二阶导数d^2y/dx^2 1.y=f(x) 2.y=ln[f(x)] 2023-02-10 若函数f(x)=x/e²,则其导数f’(x)=? 2022-11-02 已知函数f(x)二阶可导,若函数y=f(2x),则求二阶导数y'' 为你推荐: