三角函数中,什么是余弦,什么是正弦?
假如有一个直角三角形 ABC,其中 a、b 是直角边,c 是斜边。
正弦(sin)等于对边比斜边;sinA=a/c;
余弦(cos)等于邻边比斜边;cosA=b/c;
正切(tan)等于对边比邻边;tanA=a/b。
扩展资料
1、互余角的三角函数间的关系:
sin(90°-α)=cosα, cos(90°-α)=sinα,
tan(90°-α)=cotα, cot(90°-α)=tanα.
2、常用的诱导公式
设α为任意角,终边相同的角的同一三角函数的值相等
sin(2kπ+α)=sinα (k∈Z)
cos(2kπ+α)=cosα (k∈Z)
tan(2kπ+α)=tanα (k∈Z)
有关的定理:
1、正弦定理(The Law of Sines)是三角学中的一个基本定理,它指出“在任意一个平面三角形中,各边和它所对角的正弦值的比相等且等于外接圆的直径”,即a/sinA = b/sinB =c/sinC = 2r=D(r为外接圆半径,D为直径)。
2、余弦定理:
3、在平面三角形中,正切定理说明任意两条边的和除以第一条边减第二条边的差所得的商等于这两条边的对角的和的一半的正切除以第一条边对角减第二条边对角的差的一半的正切所得的商。
参考资料来源:百度百科-正弦
参考资料来源:百度百科-余弦
参考资料来源:百度百科-正切