2个回答
展开全部
取AB中点O,连接OE,AE,则∠OAE=∠OEA
因为AE平分∠BAF,所以∠OAE=∠DAE
所以∠DAE=∠OEA
所以OE‖AD
又ED⊥AF,所以ED⊥OE,从而CD⊥OE
所以CD是⊙O的切线
2、设圆的半径为r,在直角三角形OEC中,OE=r,OC=2+r,CE=4
由勾股定理:OE^2+CE^2=OC^2
即r^2+16=(2+r)^2
解得:r=3
由1知OE‖AD
所以CO/CA=CE/CD,即5/8=4/CD,CD=32/5
所以ED=CD-CE=32/5-4=12/5
在直角三角形ADC中,AD^2=AC^2-CD^2
在直角三角形ADE中,AD^2+ED^2=AE^2
所以AE^2=64-(32/5)^2+(12/5)^2=720/25
所以AE=(12根号下5)/5
因为AE平分∠BAF,所以∠OAE=∠DAE
所以∠DAE=∠OEA
所以OE‖AD
又ED⊥AF,所以ED⊥OE,从而CD⊥OE
所以CD是⊙O的切线
2、设圆的半径为r,在直角三角形OEC中,OE=r,OC=2+r,CE=4
由勾股定理:OE^2+CE^2=OC^2
即r^2+16=(2+r)^2
解得:r=3
由1知OE‖AD
所以CO/CA=CE/CD,即5/8=4/CD,CD=32/5
所以ED=CD-CE=32/5-4=12/5
在直角三角形ADC中,AD^2=AC^2-CD^2
在直角三角形ADE中,AD^2+ED^2=AE^2
所以AE^2=64-(32/5)^2+(12/5)^2=720/25
所以AE=(12根号下5)/5
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询