如何判断一元多次方程是否有解?
展开全部
对于X的一元三次方程:ax^3+bx^2+cx+d=0(a不等于0)而言有
Δ=(q^2)/4+(p^3)/27
其中
q=(2b^3-9abc+27a^2d)/(27a^3)
p=(3ac-b^2)/(3a)
当Δ<0
时
x1=³√(-q/2+√Δ)+³√(-q/2-√Δ)
x2=((-1+√3×i)/2)×(³√(-q/2+√Δ)+³√(-q/2-√Δ))
x3=((-1-√3×i)/2)×(³√(-q/2+√Δ)+³√(-q/2-√Δ))
当Δ=0时
x1=2׳√(-q/2)
x2=x3=2׳√(q/2)
当Δ>0时
x1=x2=x2=³√(-q/2+√Δ)+³√(-q/2-√Δ)
(注:“³√
”为三次根号“√”为根号,“i”为虚数单位
i^2=-1)
Δ=(q^2)/4+(p^3)/27
其中
q=(2b^3-9abc+27a^2d)/(27a^3)
p=(3ac-b^2)/(3a)
当Δ<0
时
x1=³√(-q/2+√Δ)+³√(-q/2-√Δ)
x2=((-1+√3×i)/2)×(³√(-q/2+√Δ)+³√(-q/2-√Δ))
x3=((-1-√3×i)/2)×(³√(-q/2+√Δ)+³√(-q/2-√Δ))
当Δ=0时
x1=2׳√(-q/2)
x2=x3=2׳√(q/2)
当Δ>0时
x1=x2=x2=³√(-q/2+√Δ)+³√(-q/2-√Δ)
(注:“³√
”为三次根号“√”为根号,“i”为虚数单位
i^2=-1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询