设∫(0,x)f(t)dt=1/2f(x)-1/2,且f(0)=1,则f(x)=
展开全部
∫(0->x)f(t)dt=(1/2)f(x)-1/2
f(x) =(1/2)f'(x)
∫df(x)/f(x) = 2 ∫dx
ln|f(x)| =2x + C
x=0
ln|f(0)| = C
=> C= 0
ln|f(x)| =2x
f(x) = e^(2x)
f(x) =(1/2)f'(x)
∫df(x)/f(x) = 2 ∫dx
ln|f(x)| =2x + C
x=0
ln|f(0)| = C
=> C= 0
ln|f(x)| =2x
f(x) = e^(2x)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询