已知△ABC中,AB=5,BC=6,AC=7,求△ABC面积(勾股定理)?
展开全部
过A做垂线交BC于D.设BD=x 则DC=6-x
由勾股定理有 AB^2-BD^2=AD^2=AC^2-DC^2
代入得 25-x^2=49-(6-x)^2 12=12x x=1
AD=根号(25-1)=2根号(6)
SABC=1/2*BC*AD=6根号(6),1,过A做垂线交BC于D。
设BD=x 则DC=6-x
由勾股定理有 AB平方-BD平方=AD平方=AC平方-DC平方
代入 25-x平方=49-(6-x)平方
12x=12
x=1
AD=根号(25-1)=2√6
SABC=1/2*BC*AD=6√6,1,可用海伦公式,S=根号(p(p-a)(p-b)(p-c)),p=(a+b+c)/2,可求得面积为6根号6。,0,过点A做BC边的垂线交BC于点D
由勾股定理,得 AB^2-BD^2=AC^2-CD^2
设BD=x,即25-x^2=49-(6-x)^2
解得 x=1
高AD=√(AB^2-BD^2)=2√6
面积为AD*BC/2=(2√6*6)/2=6√6,0,
由勾股定理有 AB^2-BD^2=AD^2=AC^2-DC^2
代入得 25-x^2=49-(6-x)^2 12=12x x=1
AD=根号(25-1)=2根号(6)
SABC=1/2*BC*AD=6根号(6),1,过A做垂线交BC于D。
设BD=x 则DC=6-x
由勾股定理有 AB平方-BD平方=AD平方=AC平方-DC平方
代入 25-x平方=49-(6-x)平方
12x=12
x=1
AD=根号(25-1)=2√6
SABC=1/2*BC*AD=6√6,1,可用海伦公式,S=根号(p(p-a)(p-b)(p-c)),p=(a+b+c)/2,可求得面积为6根号6。,0,过点A做BC边的垂线交BC于点D
由勾股定理,得 AB^2-BD^2=AC^2-CD^2
设BD=x,即25-x^2=49-(6-x)^2
解得 x=1
高AD=√(AB^2-BD^2)=2√6
面积为AD*BC/2=(2√6*6)/2=6√6,0,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询