矩阵可以对角化,那么特征值就等于秩了对吗?

 我来答
众里寻它c7ab1
2022-10-10 · TA获得超过1863个赞
知道小有建树答主
回答量:841
采纳率:100%
帮助的人:15.3万
展开全部

特征值与秩的关系:如果矩阵可以对角化,那么非0特征值的个数就等于矩阵的秩;如果矩阵不可以对角化,这个结论就不一定成立了。

为讨论方便,设A为m阶方阵。证明,设方阵A的秩为n。无论特征值里有没0,A的行列式都为所有特征值的乘积。

特征值与秩的相关定理:

定理:矩阵的行秩,列秩,秩都相等。

定理:初等变换不改变矩阵的秩。

定理:如果A可逆,则r(AB)=r(B),r(BA)=r(B)。

定理:矩阵的乘积的秩Rab<=min{Ra,Rb}。

引理:设矩阵A=(aij)sxn的列秩等于A的列数n,则A的列秩,秩都等于n。

当r(A)<=n-2时,最高阶非零子式的阶数<=n-2,任何n-1阶子式均为零,而伴随阵中的各元素就是n-1阶子式再加上个正负号,所以伴随阵为0矩阵。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式