tanx/tan3x在x趋向兀/2时的极限是什么?
1个回答
展开全部
tan3x = tan(2x+x) = (tan2x+tanx)/(1-tan2xtanx)
= [2tanx/(1-tan^2x)+tanx]/[1-2tan^2x/(1-tan^2x)]
= [2tanx+tanx(1-tan^2x)]/[(1-tan^2x)-2tan^2x]
= tanx(3-tan^2x)/(1-3tan^2x)
lim<x→π/2>tanx/tan3x = lim<x→π/2>(1-3tan^2x)/(3-tan^2x)
= lim<x→π/2>(1/tan^2x-3)/(3/tan^2x-1) = 3
= [2tanx/(1-tan^2x)+tanx]/[1-2tan^2x/(1-tan^2x)]
= [2tanx+tanx(1-tan^2x)]/[(1-tan^2x)-2tan^2x]
= tanx(3-tan^2x)/(1-3tan^2x)
lim<x→π/2>tanx/tan3x = lim<x→π/2>(1-3tan^2x)/(3-tan^2x)
= lim<x→π/2>(1/tan^2x-3)/(3/tan^2x-1) = 3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询